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Schedule

• Optimization 1 (ADMM)    Oct 24, 2024
• Statistical Modeling 1 (Mixture Models) Nov 11, 2024
• Optimization 2 (MDP)    May 27, 2025
• Statistical Modeling 2 (Graphical Model) …
   …
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Decision Science

• Decision science is an interdisciplinary field devoted to 
understanding and improving how individuals and organizations 
make choices—especially under uncertainty and complexity.

-- ChatGPT
• Methods for decisions involving trade-offs among conflicting 

criteria:
• Markov Decision Process
• Game theory
• Queue theory
• …
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❑ An introduction example: news vendor problem

oMarkov decision process (MDP)

• Problem formulation

❑ A multi-system maintenance problem with social equity

oPartially observable Markov decision process (POMDP)

• Problem formulation

❑ Cancer screening decision making: an LFS example 

• Reinforcement learning

• LLM-based personal healthcare advisor 4



Breast cancer screening with image information

Reinforcement learning-based framework for personalized screening  
based on an image-based artificial intelligence risk model. Balancing 
early detection benefit and screening cost.
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Con: MDP but not a POMDP approach, meaning the risk model itself is 
not personalized.



Disease screening with chronic information
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Partially observed Markov decision process approach, 
updating belief state by Bayesian method.

Con: Only one cancer type in consideration



Disease screening with chronic information
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News vendor problem: one period

𝑎: order quantity
𝐷: random demand
𝑐: purchase price per unit
𝑝: selling price per unit
𝑠: salvage price per unit

𝑅 𝑎, 𝐷 = 𝑝 min 𝑎, 𝐷 − 𝑐𝑎 + 𝑠 max(𝑎 − 𝐷, 0)
Reward (Profit) function:

Sales Revenue Salvage revenueCost

Goal: max
𝑎≥0

𝔼𝐷 [𝑅 𝑎, 𝐷 ]
9



News vendor problem: one period
Goal:
         max

𝑎≥0
𝔼𝐷 𝑅 𝑎, 𝐷 = max

𝑎≥0
𝔼𝐷 𝑝 min 𝑎, 𝐷 − 𝑐𝑎 + 𝑠 max(𝑎 − 𝐷, 0)

Assume demand 𝐷~𝐹 ∙ , 

   𝔼𝐷 𝑅 𝑎, 𝐷 = ׬
𝒟

𝑅 𝑎, 𝐷 𝑓 𝐷 𝑑𝐷

𝑎∗ = 𝐹−1(
𝑝 − 𝑐

𝑝 − 𝑠
)

Interpretation
 𝑝−𝑐

𝑝−𝑠
  is the fraction of loss profit per stock-out 

   over loss profit per unsold unit
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News Vendor Problem: infinite planning horizon

Order 
Amount 𝑎0

Realized 
Demand 𝐷0 

Inventory 𝑥1 =
max{𝑎0 − 𝐷0 + 𝑥0, 0} 

Order 
Amount 𝑎1

Realized 
Demand 𝐷1 

Inventory 𝑥2 =
max{𝑎1 − 𝐷1 + 𝑥1, 0} 

Order 
Amount 𝑎2

Realized 
Demand 𝐷2 

Inventory 𝑥3 =
max{𝑎2 − 𝐷2 + 𝑥2, 0} …

By assuming the demand distributions are identical across time, the decision 
can be solely made based on inventory.
Markov Property: 𝑃 𝑋 𝑡 + 𝑠 ∈ 𝐴 𝑋 𝑢 : 𝑢 ≤ 𝑡 = 𝑃 𝑋 𝑡 + 𝑠 ∈ 𝐴 𝑋 𝑡
State: 𝑥
Action: 𝑎
Reward: 𝑝 min 𝑎, 𝐷 − 𝑐𝑎 + 𝑠 max(𝑎 − 𝐷, 0)
Transition: max(𝑥 + 𝑎 − 𝐷, 0)
Discount Factor: 𝛼
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News Vendor Problem: infinite planning horizon

Inventory

Goal:
𝑉∗ 𝑥 = max

𝑎≥0
𝔼𝐷 𝑅 𝑥, 𝑎, 𝐷 + 𝛼𝔼𝐷[𝑉∗(max{𝑥 + 𝑎 − 𝐷, 0})]

Bellman Equation
13

Markov Property:
State: 𝑥
Action: 𝑎
Reward: 𝑝 min 𝑎, 𝐷 − 𝑐𝑎 + 𝑠 max(𝑎 − 𝐷, 0)
Transition: max(𝑥 + 𝑎 − 𝐷, 0)
Discount Factor: 𝛼



News Vendor Problem: infinite planning horizon
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Bellman Equation:
𝑉∗ 𝑥 = max

𝑎≥0
𝔼𝐷 𝑅 𝑥, 𝑎, 𝐷 + 𝛼𝔼𝐷[𝑉∗(max{𝑥 + 𝑎 − 𝐷, 0})]

𝔼𝐷 𝑅 𝑥, 𝑎, 𝐷 : expected immediate rewards
𝛼𝔼𝐷[𝑉∗(max{𝑥 + 𝑎 − 𝐷, 0})]: discounted cumulative future rewards
Can be solved by stochastic dynamic programming
Optimal Solution (policy function):

 𝜋∗ 𝑎|𝑥 = max{𝑆 − 𝑥, 0};
𝑆 is a constant derived from settings represents base-stock level.



A multi-system maintenance problem with social equity
𝒏 Consider a system with state space 0,1, ⋯ , 𝑛 . 

The system state is strictly increasing w.r.t 
measurement time. 

If this system reach 𝑛, a failure occurs and 
generates cost 𝐶𝐹. Then the system will be 
reset to state 0.

15
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A multi-system maintenance problem with social equity

Now, we set a replacement threshold 𝑟. If the 
measurement state is larger or equal  to 𝑟, a 
maintenance cost 𝐶𝑅 (𝐶𝑅 ≪ 𝐶𝐹) is generated. 
Then the system will be reset to state 0.

Here, the policy 𝑟 is constant across entire 
planning horizon.

Consider a system with state space 0,1, ⋯ , 𝑛 . 
The system state is strictly increasing w.r.t 
measurement time. 
If this system reach 𝑛, a failure occurs and 
generates cost 𝐶𝐹. Then the system will be 
reset to state 0.

𝒓

𝒏

𝑄(𝑥, 𝑟) = 𝑐 𝑥, 𝑟 + 𝛼 ෍

𝑘=0

𝑛

𝑃𝑗,𝑘
𝑟 𝑄(𝑘, 𝑟)

𝑉∗ = min
𝑟∈ 0,1,⋯,𝑛

𝑄(0, 𝑟)
16
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A multi-system maintenance problem with social equity

… … 𝑀 independent systems

Total cost over all systems:   𝐹1 𝒓 = σ𝑖=1
𝑀 𝑄𝑖(0, 𝑟𝑖) = σ𝑖=1

𝑀 𝑄𝑖(𝑟𝑖)

Gini index over all systems:  𝐹2 𝒓 = 𝐺(𝑉1 𝑟1 , 𝑉2 𝑟2 , ⋯ , 𝑉𝑀(𝑟𝑀))
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A multi-system maintenance problem with social equity
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Why does decision making problem pursue 
structural property?
1. Guide solution algorithm.
2. Ensure solutions’ identification (traceability).

Most modern decision problems do not have analytical solution. 
Without traceability ensured by structural property, it’s hard to 
convince audience the optimality of proposed solution (only via 
huge numerical test).
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Global optimal solution (Pareto Front)

Total cost over all systems:   𝐹1 𝒓 = σ𝑖=1
𝑀 𝑄𝑖(𝑟𝑖)

Gini index over all systems: 𝐹2 𝒓 = 𝐺(σ𝑖=1
𝑀 𝑄1(𝑟1) , 𝑄2 𝑟2 , ⋯ , 𝑄𝑀(𝑟𝑀))

𝑉𝑖
∗ = max

𝑟∈ 0,1,⋯,𝑛
𝑄𝑖(𝑟)

Assume 𝑉1
∗ ≤ 𝑉2

∗ ≤ ⋯ 𝑉𝑀
∗  without loss of generality.

𝑉1
∗

𝑉2
∗

𝑉3
∗

𝑉4
∗

𝑉5
∗

⋮
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𝑧
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Partially observable Markov decision process (POMDP)

Order 
Amount 𝑎0

Realized 
Demand 𝐷0 

Inventory 𝑥1 =
max{𝑎0 − 𝐷0 + 𝑥0, 0} 

Order 
Amount 𝑎1

Realized 
Demand 𝐷1 

Inventory 𝑥2 =
max{𝑎1 − 𝐷1 + 𝑥1, 0} 

Order 
Amount 𝑎2

Realized 
Demand 𝐷2 

Inventory 𝑥3 =
max{𝑎2 − 𝐷2 + 𝑥2, 0} …

1. What if the demand distributions across time are not identical?
2. What if we have little knowledge towards demand distribution?

We assume demand distributions are identical, but unknown at the beginning.
After each periods, we can observe the realized demand 𝐷𝑡



• We assume demand distributions are identical, but unknown at the 
beginning.

• After each periods, we can observe the realized demand 𝑑𝑡.
• Belief 𝑏𝑡  over Θ, which is the parameter space of demand function 𝐹 ∙ .
• POMDP reward function for one period:

𝑟 𝑏𝑡 , 𝑥, 𝑎 = ෍

𝜃∈Θ

𝑏𝑡 𝜃 𝔼𝑑~𝐹𝜃 ∙ 𝑝 min 𝑎 + 𝑥, 𝑑 − 𝑐𝑎 + 𝑠 max(𝑎 + 𝑥 − 𝑑, 0)

• Belief update: 𝑏𝑡+1 𝜃 =
𝑏𝑡 𝜃 𝐹𝜃 𝑑𝑡

σ
𝜃′∈Θ

𝜃′𝑏𝑡 𝜃′ 𝐹𝜃′ 𝑑𝑡
 

• POMDP Bellman Equation:

𝑉∗ 𝑏𝑡 , 𝑥 = max
𝑎≥0

𝑟 𝑏𝑡 , 𝑥, 𝑎 + 𝛼 ෍

𝜃∈Θ

𝑏𝑡+1 𝜃 𝔼𝑑~𝐹𝜃 ∙ [𝑉∗ 𝑏𝑡+1, 𝑥′ ]
25

Partially observable Markov decision process (POMDP)



Cancer screening decision making : an LFS example 
• Equation (2) of Nam et al., 2023
   A proportional intensity model for cancer type 𝑘 

𝜆𝑘 𝑡 𝑿 𝑡 = 𝜆0,𝑘 𝑡 exp(𝜷𝑘
𝑇𝑿 𝑡 )

   𝑿 𝑡  is covariate vector as 𝐺, 𝑆, 𝐷1 𝑡 , 𝐷2 𝑡 , ⋯ , 𝐷𝐾(𝑡) .
• What this work can provide:

1. A cancer coevolution model with Markov Property.
2. A quantitively cancer type-specific risk measurement

• What this work cannot provide:
1. Given risk, what can people do to maximize their life gain?
2. Does high risk necessarily mean high emergency compare with low-risk cancer types?
3. How to transfer risk to action?

26
Nguyen, N. H., Shin, S. J., Dodd-Eaton, E. B., Ning, J., & Wang, W. (2023). Personalized risk prediction for cancer survivors: A Bayesian semi-parametric recurrent event model with competing outcomes. bioRxiv.



• A cancer coevolution model with Markov Property (Nam et al., 2023)

27

Personalized cancer screening decision making

Nguyen, N. H., Shin, S. J., Dodd-Eaton, E. B., Ning, J., & Wang, W. (2023). Personalized risk prediction for cancer survivors: A Bayesian semi-parametric recurrent event model with competing outcomes. bioRxiv.
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Personalized cancer screening decision making

• Although Nam et al., 2023 is clear, dependence among cancer types will 
largely increase the difficulty to derive POMDP solutions (unsolvable).

• A Hierarchical Model for Multi-Tumor Screening (Hidden Markov Model)

• 𝒛(𝑡): education, occupation, genotype, gender, smoking, exercise habits…
• 𝒍(𝑡): latent factors, so that 𝑥𝑘(𝑡) ⊥ 𝑥𝑘′(𝑡)|𝒍(𝑡).
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A Hierarchical Model for Multi-Tumor Screening
Tumor stage:

𝑥𝑘 𝑡 ∈ 0, ⋯ , 𝑀 − 1
 0 represents no tumor;
 𝑀 − 1 represents the stage that tumor is discovered without prescheduled screening;

Action:
  
 The screening budget (screening time per period) is fixed as a constant (can be 1). 

Reward function if testing is taken for type k:

 
 
 𝑝neg: false negative rate; We assume there is no false positive cases.

 

Personalized cancer screening decision making
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A Hierarchical Model for Multi-Tumor Screening
 Belief: Set a prior based on a trained HMM (DL) model
 

Personalized cancer screening decision making
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A Hierarchical Model for Multi-Tumor Screening

Belief Update
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A Hierarchical Model for Multi-Tumor Screening

Belief Update



A Hierarchical Model for Multi-Tumor Screening
 Belief Update: Note we do not update transition probability (optional).

Belief Update
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Personalized cancer screening decision making

Expected immediate reward with belief

Bellman Equation:



• Termination:
• Once type k is detected, then it will be dropped from decision space.
• Once people die, the process terminated.
• The normal planning horizon is 50 years.

35

Personalized cancer screening decision making



Restless Multi-Armed Bandit (MAB) Problem

• There is no analytical solution (of course).
• Solving this problem is PSPACE-hard (at 

least as hard as any problems in NP-hard)
• Consume more than 100GB memory for 

10 cancer types, 3 latent factors, and 50 
years planning horizon per person with 
brute force.

• This problem is a typical example of  
partially independent restless multi-
armed bandit (RMAB) problem (easy to 
prove).
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A Whittle‐Index Approach for Multi‐Tumor Screening
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A Whittle‐Index Approach for Multi‐Tumor Screening
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A Whittle‐Index Approach for Multi‐Tumor Screening

• In typical RMAB theory, if each tumor is indexable (easy to prove), 
then the Whittle policy is Lagrangian-optimal for the relaxed 
average-testing constraint and generally performs near-optimally 
under the original per-period constraint. This claim should be 
proved based on settings (not very hard).

• Whittle‐Index Approach can only provide near optimal solution 
(with performance guarantee).

• No time to work on the structural property so far.
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Personalized cancer screening decision making

• Considering the data limitation, 𝑋𝑘 𝑡 ∈ [0,1]: caner type 𝑘 risk at 
time 𝑡.

40



Reinforcement Learning Approach
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Reinforcement Learning Approach

42
Build based on OpenAI GYM



LLM-based personal healthcare advisor

• LLM fine tune by LoRA (Low-rank Adaptation) + Huggingface
• Weight matrix for LLM: 𝐖 ∈ ℝ𝑑×𝑘

• LoRA parameterizes the update as Δ𝐖 = 𝐀𝐁, where 𝐀 ∈ ℝ𝑑×𝑟, 
and 𝐁 ∈ ℝ𝑟×𝑘, with rank r ≪ min(𝑑, 𝑘).

• Instead of learning 𝑑 × 𝑘 updates, LoRA learn only 𝑑 + 𝑘 × 𝑟.
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LLM-based personal healthcare advisor

• LLM fine tune by LoRA (Low-rank Adaptation) + Huggingface

44



LLM-based personal healthcare advisor
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Follow-up directions

• Incorporate family history for 
   personal decision making
• Family-wise decision making
• Genotype unknown (?)

46



• Thanks
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