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Decision Science

* Decision science is an interdisciplinary field devoted to
understanding and improving how individuals and organizations
make choices—especially under uncertainty and complexity.

-- ChatGPT

* Methods for decisions involving trade-offs among conflicting
criteria:
* Markov Decision Process
* Game theory
* Queue theory
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Disease screening with chronic information
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Partially observed Markov decision process approach,
updating belief state by Bayesian method.

Con: Only one cancer type in consideration



Disease screening with chronic information

22 + X X X X X X X X X X X X

20 + X X

X X

18 + ®R®000000000O0O0O0O0O0O0O00
R

16 + D

R

14 + D

R B S i S R S
12 + D + +

@S b

Total # of mammograms

Age
—Non-diabetic woman ---Pre-diabetic woman
-=Diabetic woman O Pre-diabetic - single di approach
+ USPSTF - non/pre-diabetic woman x American Cancer Society - non/pre-diabetic woman
O USPSTF - diabetic woman O American Cancer Society - diabetic woman
informs’ e e 0

https: ine.informs. ISSN 0025-1909 (print), ISSN 1526-5501 (online)

Personalized Disease Screening Decisions Considering a
Chronic Condition

Ali Hajjar,»® Oguzhan Alagoz®*

aHarvard Medical School, Boston, Massachusetts 02115; ® Institute for Technology Assessment, Massachusetts General Hospital, Boston,
Massachusetts 02114; © Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705
*Corresponding author
Contact: ahjaar@mgh.harvard.edu, () https:// orcid.org /0000-0003-4654-9798 (AH); alagoz@engr.wisc.edu,

https: // orcid.org /0000-0002-5133-1382 (OA)



Content

oLiterature review
1 An introduction example: news vendor problem
oMarkov decision process (MDP)
* Problem formulation
J A multi-system maintenance problem with social equity
oPartially observable Markov decision process (POMDP)
* Problem formulation
J Cancer screening decision making: an LFS example
* Reinforcement learning

* LLM based personal healthcare advisor



News vendor problem: one period

Decision Outcome a: order quantity
(Day Start) (End of Day) D:random demand
e e c: purchase price per unit
rder ealize : : : :
{Amount }—»[ Betnand D J p: selling prlc?e per unlt.
s: salvage price per unit

R(a,D) =pmin(a,D) —ca + sm —D,0
Reward (Profit) function: (a,D) p‘ 1 (, )‘ D ax(a ),

I

Sales Revenue Cost Salvage revenue

Goal: max Ep [R(a,D)]



News vendor problem: one period

Goal.
max Ep [R(a,D)] = maxEp [p min(a,D) — ca + s max(a — D, 0)]
az

a=0
Assume demand D~F (),
E, [R(a,D)] = f,, R(a, D)f(D)dD

p—C

a ('p—s

)

Interpretation

—C . . .
% IS the fraction of loss profit per stock-out
over loss profit per unsold unit

10
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News Vendor Problem: infinite planning horizon

Inventory x, =

max{al — D1 + X1, O}

Inventory x3 = Realized Order
max{a, — Dy + x, 0} Demand D, Amount a,

By assuming the demand distributions are identical across time, the decision
can be solely made based on inventory.

Markov Property: P(X(t + s) € Al{X(w):u < t}) = P(X(t +s) € A|X(t))
State: x

Action: a

Reward: p min(a, D) — ca + s max(a — D, 0)

Transition: max(x +a — D, 0)

Discount Factor:
12



News Vendor Problem: infinite planning horizon

Decision Outcome
Markov Property: (Day Start) (End of Day)

State: x _
Action: a L Order { Realized }

' : Amount Demand D
Reward: p min(a, D) — ca + s max(a — D, 0) ]

Transition: max(x +a — D, 0)
Discount Factor: a

Goal:
V:(x) = rggg{[ED |[R(x,a,D)] + aEp[V*(max{x + a — D, 0})]}

Bellman Equation

13



News Vendor Problem: infinite planning horizon

Bellman Equation:
Vi(x) = ma(;({IED |[R(x,a,D)] + aEp[V*(max{x + a — D,0})]}
a=

E, |[R(x,a,D)|: expected immediate rewards
alky |V (max{x +a — D,0})|: discounted cumulative future rewards
Can be solved by stochastic dynamic programming
Optimal Solution (policy function):
n*(a|x) = max{S — x, 0};
S is a constant derived from settings represents base-stock level.

14



A multi-system maintenance problem with social equity

10

n

Consider a system with state space {0,1, -+, n}.
The system state is strictly increasing w.r.t
measurement time.

If this system reach n, a failure occurs and
generates cost CF. Then the system will be
reset to state 0.

System State (0 to n)

Time (Dto T)

Unpublished. Please do né% spread



A multi-system maintenance problem with social equity

? / n Consider a system with state space {0,1, -+, n}.
9 / \ The system state is strictly increasing w.r.t

measurement time.
If this system reach n, a failure occurs and
generates cost CF. Then the system will be

S o reset to state 0.
g s T Now, we set a replacement threshold r. If the
E .
g a measurement state is larger or equal tor, a
; maintenance cost CE (CR « CF) is generated.

3 .

Then the system will be reset to state 0.
2
. \ \ Here, the policy r is constant across entire
\ planning horizon.
0 T T

Time (Dto T)

Q(x,r) =clx,r) + a z P Q(k, 1)
V*=__min {Q(O r)} k=0

reto,1, Unpublished. Please do not spread



A multi-system maintenance problem with social equity

...... M independent systems

————
0 ! 2 3 4 6 7 8 o o o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

Total cost over all systems: F; (1) = Z{VL1 Q;(0,1;) = levi1 Qi (1)

Giniindex over all systems: F,(r) = G(V1(r1), Vo (1), =+, Vir (1))

eHMm{iél }[Fl(r), Fg(r)}
r i—1 yeeusTlg

Unpublished. Please do nc% spread



A multi-system maintenance problem with social equity

Theorem 5.1 (Quasi-Convexity of Vy(r)). Let CF' > CT > 0 and a € (0,1). Suppose P, is

strictly increasing in r. Then Vo(r), viewed as a function of r € {0,...,n}, can be only strictly
increasing, strictly decreasing, or first decreasing and then increasing. Equivalently, Vo(r) has at
most one local minimum in {0,...,n}.

x(t) = (max{x,t},...,max{z,,t}).

We claim these vectors x(t) exactly comprise the non-dominated set in this specific model with
linear lower bounds and the given disparity measure:

Theorem 6.8 (All Pareto-Optimal Solutions Are Threshold Vectors in the Sum—Disparity Model).

Under (G,A) on F, the set {x(t) : t € [m,M]|} is precisely the set of non-dominated (Pareto-
optimal) solutions. Specifically:

o Noy # x(t) can dominate x(t), meaning A(y) < A(x(t)) and G(y) < G(x(t)) (with at least
one strict) is impossible unless y = x(t).

e Any x € F not of that threshold form is strictly dominated by some x(t*).

Unpublished. Please do né% spread



Why does decision making problem pursue
structural property?

1. Guide solution algorithm.
2. Ensure solutions’ identification (traceability).

Most modern decision problems do not have analytical solution.
Without traceability ensured by structural property, it’s hard to

convince audience the optimality of proposed solution (only via
huge numerical test).

19



Global optimal solution (Pareto Front)

Total costoverall systems: F;(r) = Y11 . Q;(ry)

Giniindex over all systems: F, (1) = G(ZM., 0,(r1), Q2(12), -+, Qu(riy)) Ve
V4*

min [Fl(r), Fg(r)]
re[[22,{0,....n:} Vi
Vi = _max (0i(r)) &
Vi

Assume Vi < V5 < .-V without loss of generality.

Unpublished. Please do nc%% spread



Global optimal solution (Pareto Front)
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Global optimal solution (Pareto Front)

Total cost over all systems: F;(r) = 1 Q;(ry)

Giniindex over all systems: F,(r) = G(Z 2101(r), 02019, ++, Qu () Ve
z
Vi
min [Fl (r), Fg(r)}

renvjj\il{ov'“ani} V3
" V2
Vi= Jmax . {Q:()} ’
Vi
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Partially observable Markov decision process (POMDP)

Order Realized Inventory x; = Order Realized Inventory x, =
Amount a Demand D, max{ag — Dy + xo, 0} Amount a4 Demand D, max{a, — Dy + x4, 0}

Inventory x3 = Realized Order
max{a; — D + x2, 0} Demand D, Amount a,

1. What if the demand distributions across time are not identical?
2. What if we have little knowledge towards demand distribution?

We assume demand distributions are identical, but unknown at the beginning.
After each periods, we can observe the realized demand D,

24



Partially observable Markov decision process (POMDP)

* We assume demand distributions are identical, but unknown at the
beginning.

* After each periods, we can observe the realized demand d;.
Belief b, over ©, which is the parameter space of demand function F(-).
POMDP reward function for one period:

r(bs, x,a) = Z be(0)Eq-F,)[p min(a + x,d) — ca + s max(a + x — d, 0)]
feo

bt(8)Fg(dy)
67be(61)F 1 (dg)

Belief update: b;,(0) =
ZH’EG)

POMDP Bellman Equation:

V*(bt,X) = 1’{1133( {’r(bt,x, Cl) + «a 2 bt+1(0)IEd~F9(-) [V*(bt+1,x’)]
B 6€6

25



Cancer screening decision making : an LFS example

* Equation (2) of Nam et al., 2023

A proportional intensity model for cancer type k
A (E1X(8)) = Ao (D) exp(Bi X (1))
X(t) is covariate vectoras {G, S, D,(t), D,(t), -, Dx(t)}.

* What this work can provide:
1. A cancer coevolution model with Markov Property.
2. A quantitively cancer type-specific risk measurement

* What this work cannot provide:
1. Given risk, what can people do to maximize their life gain?
2. Does high risk necessarily mean high emergency compare with low-risk cancer types?
3. How to transfer risk to action?

26

Nguyen, N. H., Shin, S. J., Dodd-Eaton, E. B., Ning, J., & Wang, W. (2023). Personalized risk prediction for cancer survivors: A Bayesian semi-parametric recurrent event model with competing outcomes. bioRXxiv.



Personalized cancer screening decision making

* A cancer coevolution model with Markov Property (Nam et al., 2023)

t=0 t=1 t=2 t=3 t=4
- @ - ® - ® - 8
#° o ° o
¢ ¢ /\%ﬁ? @
@ @ k=2 -~ k=2 . k=2 -~ k=2
L/\
g g g p
®@ - ® - ® - ® -

27

Nguyen, N. H., Shin, S. J., Dodd-Eaton, E. B., Ning, J., & Wang, W. (2023). Personalized risk prediction for cancer survivors: A Bayesian semi-parametric recurrent event model with competing outcomes. bioRXxiv.



Personalized cancer screening decision making

* Although Nam et al., 2023 is clear, dependence among cancer types will
largely increase the difficulty to derive POMDP solutions (unsolvable).

* A Hierarchical Model for Multi-Tumor Screening (Hidden Markov Model)

z(t) — L(t) — X (1)
—~— —~— ——

(observed covariates) (latent factor, partially covariate-dependent) (tumor stages, dependent on L(t) alone)

* z(t): education, occupation, genotype, gender, smoking, exercise habits...
* I(t): latent factors, so that x, (t) L x,/(t)|L(1).

28



Personalized cancer screening decision making

z(t) — L(t) — Xi(t)
(observed covariates) (latent factor, partially covariate-dependent) (tumor stages, dependent on L(t) alone)

A Hierarchical Model for Multi-Tumor Screening

Tumor stage:
x.(t) €{0,-+,M — 1}
0 represents no tumor;
M — 1 represents the stage that tumor is discovered without prescheduled screening;
Action:
a(t) € {NoTest} U {TestTumor(1l),..., TestTumor(K)}.

The screening budget (screening time per period) is fixed as aconstant (can be 1).

Reward function if testing is taken for type k:

r(TestTumor(k), X;(t) =m) = {Rg Lip=—oy + (1 — pneg) (M —1) —m) 1{m>0}} — c

Pneg: false negative rate; We assume there is no false positive cases.
29



Personalized cancer screening decision making

z(t) — L(1) — Xi(t)
N~~~ ~—~ N——
(observed covariates) (latent factor, partially covariate-dependent) (tumor stages, dependent on L(t) alone)

A Hierarchical Model for Multi-Tumor Screening
Belief: Set a prior based on a trained HMM (DL) model

For each ¢, define the M x 1 vector

by (l:t) = (box(l:t), bi(ft),.. -;bM—l,k(g;t))Ta

where
bk (63 t) = Pr[Xi(t) =m | L(t) = {].

Thus, each column by (¢;t) has dimension M with entries summing to 1. Our entire belief state at
time ¢ is (p(t), {br(€; 1) }he1... K. ter)-

e p(t) tracks the probability distribution of the latent factor L(t).

e For each possible latent state ¢, we keep a separate distribution over Xy (t) for each tumor k. 30



Belief Update

A Hierarchical Model for Multi-Tumor Screening

['(z(t)) € RIEXILl: Transition matrix for the joint latent vector L(t). Each entry

Too(z(t) =Pr[L(t+1) = | L(t) = ¢, (t)].
ak,m(f) € [0,1]: Probability that tumor & transitions from stage m to m + 1 given L(t) = /.

T,(f) € RMxM. Stage-transition matrix for tumor k, given L(t) = ¢. Specifically,

;

apm (L), ifm'=m+1<M-1,

(T ) = 4 L —apm(l), ifm'=m<M-2,

1, if m=M—1and m’ =m,
\ 0, otherwise.
O(g) and O(g) e RM>M. Diagonal observation matrices for tumor k. Under no false
k.pos k.neg ’ g :
positives and uniform pyeg,
0 m =10
¢ ) ’ J4 l
(O](c,iaos)mam - (O)gc,zleg)m,m =1- (0]((;13305)771,?77»‘
I — pneg, m >0,

31



Belief Update

A Hierarchical Model for Multi-Tumor Screening

At time ¢, we take an action
a(t) € {NoTest} U {TestTumor(1),..., TestTumor(K)}.

If a(t) = TestTumor(k), we observe pos or neg with probabilities:

L]

po&, Zpg(t 1T OECELOS (ﬁ;t)),
2T’ 0

r(neg) Zpg(t )1’ O‘l(€ neg by.(¢;t)).

No false positives means if X (¢) = 0, pos is impossible.

Observation Matrices.

. ¢ .
O;ﬂ LOS = dlag(O, 1~ Ppnegy -y 1 — pneg), Ogcjlcg = dlag(l, Preg - - - ,pneg).

If NoTest is chosen, no new observation is obtained at time .

32



Belief Update

A Hierarchical Model for Multi-Tumor Screening

Belief Update: Note we do not update transition probability (optional).

Suppose a(t) = TestTumor(k) and we observe pos: An analogous update applies if neg is observed. If a(t) = NoTest, we have p*(t) = p(t) and

bl (4;t) = b(l:t).
1. Unnormalized posterior for Xp(t) given L(t) = £ K(6) k(G)

o 5.2 Latent Factor Transition

k,pos

by(4; ).
The next step is L(t) — L(t + 1). We define

)

. Probability of pos given L(t) = ¢: B
p(t+1) =T(z(t) " p*(t).
¢
Ppos,t = ]-T (Ol(c,i)os bk(ga t)) :
5.3 Tumor Stage Transition

3. Overall probability of pos: ol Finally, each tumor k evolves conditioned on L(t + 1). Since L(t + 1) = ¢’ occurs with probability
Ppos = Z pf(t) Ppos,t- |£| _
=1 pett+1) =3 [ () Tro(a®))].
4. Updated distribution over L(t): =
pi(t) = pe(t) Pposit the new distribution for X (t + 1) given L(t + 1) = ¢’ is
Ppos
L]
5. Updated distribution over X (t) given L(t) = ¢: zp;(t) Ty (z(t)) Tgf) b} (¢:1)
br(lst+1) = = :
0! b6t k ) por(t+1) 33

b (6 ) = —kpos 25T
Ppos,t



Personalized cancer screening decision making

Expected immediate reward with belief (p(t), {br({;t)} =1, K ter)-

L] M—1
E[ry, | belief] Zpg [Rob()k (1) + 3 (1~ pueg) (M — 1) — m) bm,k(ﬁ;t)} _
m=1

Bellman Equation:

Let

Vi (pa {bk (E)}ﬁ Z)

denote the optimal value function at time ¢, with horizon 7" or discount factor g € (0,1]. Then:

Vi( . ) - aE{NoTest}U{IT%?t}%umor(D ..... K}{T(. o O‘;)-|-5E[W+1 (p(t+1)j {bk(gj t—l_l)}j Z(t+1)) ‘ ( . )’ al }

The expectation is taken over observation outcomes (pos or neg) if a tumor is tested.
34



Personalized cancer screening decision making

Let
Vi(p, {br(0)}, z)

denote the optimal value function at time ¢, with horizon T or discount factor 8 € (0,1]. Then:

‘/t( ' ) - aé{NoTest}U{%legc}’%umor(l) ..... K}{T( Y CL)‘|—BE[W+1 (p(t—'_l)’ {bk(& t+1)}, Z(t+1)) ‘ ( h )7 a} }

e Termination:

* Once type kis detected, then it will be dropped from decision space.
* Once people die, the process terminated.
* The normal planning horizon is 50 years.

35



Restless Multi-Armed Bandit (MAB) Problem

* There is no analytical solution (of course).

* Solving this problem is PSPACE-hard (at
least as hard as any problems in NP-hard) & @

* Consume more than 100GB memory for f N |
SLHHLLNLLUIELL
10 cancer types, 3 latent factors, and 50 @\‘ ([
years planning horizon per person with —
brute force.
* This problem is a typical example of Arm1l Arm2 Arm3 Arm4

partially independent restless multi-
armed bandit (RMAB) problem (easy to

prove).

36



A Whittle-Index Approach for Multi-Tumor Screening

Definition 1 (Indexability). Consider the single-arm (single-tumor) POMDP with actions {TEST, NOTEST}.

For each subsidy (or Lagrange multiplier) X > 0, let ™ be an optimal policy that mazimizes
RM7m) = E| discounted total reward + A x (discounted count of NoTest actions)].
Define the passive set P(\) C S of system states S as
P(\) = {s €S | the action NOTEST is optimal (not worse) under A}.
We say the system is indexable if
P(\) € P(N), forall0< X< ).

In other words, the set of states for which NOTEST is optimal grows monotonically in .

37



A Whittle-Index Approach for Multi-Tumor Screening

Once a Whittle index WI(b;) can be assigned to each tumor k (where by is the current belief over

(L(t), X;(t))), the Whittle-index scheduling policy is:
1. At each time ¢, compute WI(b%) for all tumors k.
2. Test the top M tumors with highest indices. (If the budget is M.)

3. Observe the test outcomes and update each tumor’s belief according to Section |5l Untested

tumors also update via the “no observation” transition.

4. Repeat for t + 1.

38



A Whittle-Index Approach for Multi-Tumor Screening

* In typical RMAB theory, if each tumor is indexable (easy to prove),
then the Whittle policy is Lagrangian-optimal for the relaxed
average-testing constraint and generally performs near-optimally

under the original per-period constraint. This claim should be
proved based on settings (not very hard).

* Whittle-Index Approach can only provide near optimal solution
(with performance guarantee).

* No time to work on the structural property so far. @

39



Personalized cancer screening decision making

 Considering the data limitation, X, (t) € [0,1]: caner type k risk at
time t.

e If we TESTTUMOR(K):

1£|

r(TESTTUMOR(K), p(t)) = ¥ pe(t) [(1 — 240) Ro + The(1 — Prcg) Rdet] _ ¢
=1

where Ry is the baseline reward for having no tumor, Ry is the reward for detection (when

the tumor is indeed present and the test is positive), and ¢ is the per-test cost.

e If we NOTEST:

£] _
r(NoTesT,p(t) = Y pelt) [pif7 ™ Rpuss
£=1

40



Reinforcement Learning Approach




Reinforcement Learning Approach




LLM-based personal healthcare advisor

* LLM fine tune by LoRA (Low-rank Adaptation) + Huggingface

 Weight matrix for LLM: W € R4*¥

 LoRA parameterizes the update as AW = AB, where A € R**",
and B € R™**, with rankr « min(d, k).

* Instead of learning d X k updates, LoRA learnonly (d + k) X r.

43



LLM-based personal healthcare advisor

* LLM fine tune by LoRA (Low-rank Adaptation) + Huggingface
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LLM-based personal healthcare advisor

{
"instruction”: "Given this patient screening state, recommend the next test and justify your choice.",
"input": {
"covariates": {
"age": 62,
"smoking_pack_years": 30,
"quit_years_ago": 5,
"family_history_colon": false
¥
"belief": {
"latent_probs": { "11": ©.60, "12": ©.40 },
"tumor_beliefs": {
"1": { "stage@": ©.70, "stagel": 0.20, "stage2": 0.10 },
"2": { "stage@": ©.50, "stagel": 0.30, "stage2": 0.20 }
}
¥
"cost": 100,
"budget”: 1
¥
"output": {
"action": "TestTumor(2)",
"justification": "Tumor 2 has the highest expected net benefit (Whittle index 3.2) given its
9.5 probability of being present and cost 100."
}
¥
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Follow-up directions

* Incorporate family history for
nersonal decision making

* Family-wise decision making
* Genotype unknown (?)

Family Tree (Layered by Generation)
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e Thanks
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