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Introduction

• Currently, 800 million people spend at least 10 percent of their household 
budgets on health expenses for themselves, a sick child or other family 
member. For almost 100 million people these expenses are high enough 
to push them into extreme poverty, forcing them to survive on just $1.90 or 
less a day.                                                          

                                                                              –World Health Organization 

• The digital divide is now a matter of life and death for people who are 
unable to access essential health-care information. It is threatening to 
become the new face of inequality, reinforcing the social and economic 
disadvantages suffered by women and girls, people with disabilities and 
minorities of all kinds. 

                  - UN Secretary-General António Guterres in the pandemic period
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Introduction

• How to implement statistical machine learning techniques to meet the 
general benefiting objective under the constraints of limited healthcare 
capacity and costs?

• Answer: Precise Medicine and Public Health by data mining on the 
patients’ health records

• Challenge: 

1. Privacy and Security

2. Mixed types, numerical, ordinal, categorical, functional, etc.

3. Lack of a framework to include and distill knowledges from different 
resources.
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A novel sparse generalized structural equation 
modeling with structured sparsity for subgroup 

discovery from multi-modal mixed-type data

7

Yu Ding, Bing Si



Precision Medicine
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Phenotype Discovery



Precision Medicine
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Multi-modal Health Data
• Medical Imaging
• Electronic Health Records
• Health Surveys
• Smart Sensing data
• …

Phenotype Discovery



Cardiometabolic (CM) Health: The Leading Cause of Death
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Heterogeneity in CM Risk Factors: A Major Challenge in CM 
Health Promotion 



Limitations of Existing Research

• Clinical models: Specific to one risk modality

▪ Aim to discover underlying mechanism between the risk factors and CM health

▪ Lack a comprehensive consideration of multi-modal risk factors

• Statistical clustering models

▪ Gaussian Mixture Model (GMM)

• Not suitable for mixed-type data including continuous, nominal, and ordinal

• Mixed-GMMs 

• Not consider latent factor structures

▪ Factor Mixture Model (FMM)

• Considers modality-specific latent factors for dimension reduction and knowledge discovery

• Not consider either mixed-type data or sparse variable selection
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Proposed: Multi-modal Mixed-type Factor Mixture Model 
with Hierarchical Selection (M2-FMM-hier) 

• Develop a Multi-modal Mixed-type Factor Mixture Model capable of hierarchical selection 

(M2-FMM-hier) for modalities and features

▪ If a modality is uninformative to clustering, all its features will be excluded.

▪ Feature selection happens in the modalities that remain. 

• Enable modality-specific latent factor extraction to increase model interpretability and 

facilitate medical knowledge discovery. 

• Apply M2-FMM-hier for phenotype discovery from high-dimensional multi-modal mixed-

type health data for targeted intervention and Precise Medicine.
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Multi-modal 

mixed-type 

features

Modal-wise 

latent factors

Latent 

clusters/phenotypes

𝑠1, … , 𝑠𝐾
𝑇~ multinomial 𝑤1, … , 𝑤𝐾  

Prior distribution of phenotypes: 

Covariates 

(age, gender)

𝜼𝑖
(𝑚)

= 𝐔(𝑚)𝒔𝑖 + 𝝃𝑖
(𝑚)

Link latent factors with latent phenotypes: 

Link modality-wise mixed-type features 𝒙𝑖
(𝑚)

 with latent 

factors 𝜼𝑖
(𝑚)

 and covariates 𝒛𝑖
(𝑚)

 : 

𝒙𝑖
(𝑚)

= 𝐋(𝑚)𝜼𝑖
(𝑚)

+ 𝐁(𝑚)𝒛𝑖
(𝑚)

+ 𝜺𝑖
(𝑚)

 

                                                for 𝑖 = 1, … , 𝑁 and 𝑚 =  1, … , 𝑀1.

𝑙𝑜𝑔
P 𝒙𝑖

(𝑚)
 ≤ 𝑐×𝟏𝑃

1−P 𝒙
𝑖
(𝑚)

 ≤ 𝑐×𝟏𝑃

 = 𝜶𝑐
(𝑚)

+  𝐋(𝑚)𝜼𝑖
(𝑚)

+ 𝑩(𝑚)𝒛𝑖
(𝑚)

+ 𝜺𝑖
(𝑚)

 

                             for 𝑖 = 1, … , 𝑁 and 𝑚 =  𝑀1 + 1, … , 𝑀1 + 𝑀2.           

Mathematical Formulation: M2-FMM-hier
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Mathematical Formulation: M2-FMM-hier

= σ𝑚=1
𝑀1 log 𝑓 𝐗𝑚, 𝐙𝑚|𝐇𝑚; 𝚯1 + σ𝑚=𝑀1+1

𝑀1+𝑀2 log 𝑓 𝐗𝑚, 𝐙𝑚|𝐇𝑚; 𝚯2  + σ𝑚=1
𝑀 log 𝑓 𝐇𝑚|𝒔; 𝚯3 + log 𝑓 𝒔; 𝚯4 . 

• Complete-data (observed & latent) log-likelihood function: 

𝑙 𝑓 𝚯; 𝐗𝑚, 𝐙𝑚, 𝐇𝑚 𝑚=1
𝑀 , 𝒔



• Complete-data (observed & latent) log-likelihood function: 

subject to  𝐸 𝜼𝑖
(𝑚)

= 𝟎, 𝑉𝑎𝑟 𝜼𝑖
(𝑚)

= 𝐈 (identifiability constraints)

• Optimization with double 𝑙21 penalization:

𝒙𝑚|𝑠𝑘 = 1~𝑁 𝐋𝑚𝒖𝑚,𝑘 + 𝐁𝑚𝒛,  𝐋𝑚 𝚺𝑚𝐋𝑚
𝑇 + 𝚿𝑚

• If 𝐮 𝑚 = 𝟎, then the 𝑚𝑡ℎ modality is uninformative to phenotype clustering.

• If 𝐮 𝑚 ≠ 𝟎 and 𝒍𝑝
𝑚

= 𝟎, then the p-th feature is uninformative to phenotype clustering. 

Novel Property of the optimization: hierarchical selection of modalities and features
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m-th modality

k-th cluster

min
𝚯

ሚ𝑙 𝚯 = −𝑙 𝑓 𝚯; 𝐗𝑚, 𝐙𝑚, 𝐇𝑚 𝑚=1
𝑀 , 𝒔 + 𝜆1 σ𝑚=1

𝑀 𝐮 𝑚
2

 +𝜆2 σ𝑚=1
𝑀 σ𝑝=1

𝑃 𝒍𝑝
𝑚

2

= σ𝑚=1
𝑀1 log 𝑓 𝐗𝑚, 𝐙𝑚|𝐇𝑚; 𝚯1 + σ𝑚=𝑀1+1

𝑀1+𝑀2 log 𝑓 𝐗𝑚, 𝐙𝑚|𝐇𝑚; 𝚯2  + σ𝑚=1
𝑀 log 𝑓 𝐇𝑚|𝒔; 𝚯3 + log 𝑓 𝒔; 𝚯4 . 

𝑙 𝑓 𝚯; 𝐗𝑚, 𝐙𝑚, 𝐇𝑚 𝑚=1
𝑀 , 𝒔

Mathematical Formulation: M2-FMM-hier



• Traditional Expectation-Maximization (EM) framework does not suffice.

▪ E-step: derive

 

 

▪ M-step: minimize −𝑄 𝚯; 𝚯 𝑗−1
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𝑄 𝚯; 𝚯 𝑗−1 ≜ 𝐸 𝐇𝑚 𝑚=1
𝑀 ,𝒔| 𝐗𝑚 𝑚=1

𝑀 ; 𝚯 𝑗−1
ሚ𝑙 𝚯; 𝐗𝑚 , 𝐇𝑚 𝑚=1

𝑀 , 𝒔 (*)

Methodological Contribution: Gauss-Hermite Expectation-
Majorization-Minimization (GH-EMM) Algorithm
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𝑄 𝚯; 𝚯 𝑗−1 ≜ 𝐸 𝐇𝑚 𝑚=1
𝑀 ,𝒔| 𝐗𝑚 𝑚=1

𝑀 ; 𝚯 𝑗−1
ሚ𝑙 𝚯; 𝐗𝑚 , 𝐇𝑚 𝑚=1

𝑀 , 𝒔

= 𝜑1 𝐋 𝑚 , 𝐁 𝑚 , 𝚿 𝑚
𝑚=1

𝑀1
+ 𝜑2 𝜶𝑐

(𝑚)

𝑐=1

𝐶−1
, 𝐋 𝑚 , 𝐁 𝑚 , 𝚿 𝑚

𝑚=𝑀1+1

𝑀1+𝑀2

+ 𝜑3 𝝁(𝑚,𝑘), 𝚺(𝑚,𝑘)
𝑘=1

𝐾

𝑚=1

𝑀
+ 𝜑4 𝒘  

Numerical modalities                                   Categorical modalities                                         Latent factors                                             

Non-analytical terms
• Monte Carlo EM: computationally expensive
• Gauss Hermite Quadrature

න exp −𝑥2 𝑔 𝑥 𝑑𝑥 ≈ ෍

𝑡=1

𝑇

𝜔𝑡𝑔(𝑥𝑡)

𝑥𝑡: roots of the Hermite polynomial 𝐻𝑇(𝑥)

𝜔𝑡 =
2𝑇+1𝑇! 𝜋

[𝐻𝑇+1(𝑥𝑡)]2 

(*)

Methodological Contribution: Gauss-Hermite Expectation-
Majorization-Minimization (GH-EMM) Algorithm



• Traditional Expectation-Maximization (EM) framework does not suffice.
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𝑄 𝚯; 𝚯 𝑗−1 ≜ 𝐸 𝐇𝑚 𝑚=1
𝑀 ,𝒔| 𝐗𝑚 𝑚=1

𝑀 ; 𝚯 𝑗−1
ሚ𝑙 𝚯; 𝐗𝑚 , 𝐇𝑚 𝑚=1

𝑀 , 𝒔

= 𝜑1 𝐋 𝑚 , 𝐁 𝑚 , 𝚿 𝑚
𝑚=1

𝑀1
+ 𝜑2 𝜶𝑐

(𝑚)

𝑐=1

𝐶−1
, 𝐋 𝑚 , 𝐁 𝑚 , 𝚿 𝑚

𝑚=𝑀1+1

𝑀1+𝑀2

+ 𝜑3 𝝁(𝑚,𝑘), 𝚺(𝑚,𝑘)
𝑘=1

𝐾

𝑚=1

𝑀
+ 𝜑4 𝒘  

Numerical modalities                                   Categorical modalities                                         Latent factors                                             

𝒍𝟐𝟏- penalized non-smooth optimization problems
• Conventional solvers (e.g., BCGD and Nesterov’s) are slow. 
• Majorization-Minimization (MM)

𝑓 𝜃  : Objective function

𝑔𝑛 𝜃 : Majorizing surrogate 

(*)

Methodological Contribution: Gauss-Hermite Expectation-
Majorization-Minimization (GH-EMM) Algorithm



E-step Enabled by Gauss-Hermite (GH)

20

Definition 1 (Multivariate GH approximation): Given vector 𝒛 with rank(𝒛) = 𝑄, and function 𝑔 ∈ ℂ2𝑇: ℝ𝑄 → ℝ by applying 

Hermite interpolation , we have 

𝑺׬ 
𝑒𝑥𝑝 −𝒛𝑇𝒛 𝑔 𝒛 𝑑𝒛 ≈ σ𝑡1=1

𝑇 ⋯ σ𝑡𝑄=1
𝑇 𝜔𝑡1

⋯ 𝜔𝑡𝑄
𝑔(𝒛𝑡)                        

where 𝑺 ∈ ℝ𝑄 is the integration set, 𝒛𝑡 = (𝑧𝑡1
, ⋯ , 𝑧𝑡𝑄

)𝑇 and 𝑧𝑡𝑞
are the roots of Hermite polynomial of order T, 𝐻𝑇(𝑥) =

(−1)𝑇𝑒𝑥2 𝑑𝑇

𝑑𝑥𝑇 𝑒−𝑥2
  for 𝑡𝑞 ∈ {1, ⋯ , 𝑇} and 𝑞 ∈ {1, ⋯ , 𝑄}. The weight, 𝜔𝑡𝑞

, is given by 𝜔𝑡𝑞
=

2𝑇+1𝑇! 𝜋

[𝐻𝑇+1(𝑧𝑡𝑞)]2 .

Proposition  1 (The GH approximate error is bounded): If the integration set 𝑺 in Definition 1 is closed, the GH approximation 

error, determined by 
𝑇! 𝜋

2𝑇(2𝑇)!
𝑔(2𝑇)(𝜉),  reduces to zero for a sufficiently large T. 

E-step: The non-analytical terms can be explicitly approximated by GH Quadrature.



M-step Integrated with Majorization Minimization (MM)
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Theorem 1 (Convergence of the MM algorithm): Assume the following optimization problem where 𝒍 denotes the parameters to 

be estimated and 𝐃 denotes the data: 

min
𝒍

−𝜑 𝒍|𝐃 + 𝜆 𝑙 2

If the objective function 𝜑 𝒍|𝐃  is differentiable and convex with respect to 𝒍 and its first-order derivative 𝜑′ 𝒍|𝐃  is Lipschitz 

continuous, the MM algorithm with the first-order surrogate function is guaranteed to achieve the Karush–Kuhn–Tucker (KKT) 

conditions upon convergence.

Proposition 2 (Lipschitz continuity):  The sub-optimization problems are jointly convex and their first-order derivatives are 

Lipschitz continuous with respect to 𝐋 𝑚 , 𝐁 𝑚  for 𝑚 = 1, … . , 𝑀1 , 𝐋 𝑚 , 𝐁 𝑚  for 𝑚 = 𝑀1 + 1, … . , 𝑀1 + 𝑀2 , and

𝝁(𝑚,𝑘)
𝑘=1

𝐾
 for 𝑚 = 1, … . , 𝑀1 + 𝑀2, respectively.  

M-step: The objective functions satisfy the Lipschitz continuity condition and thus can be 

efficiently optimized by the MM algorithm. 



Simulation Study – Clustering Accuracy 

• Competing methods applied to cluster: 

▪ Pooled numerical modalities

▪ Pooled categorical modalities

• Pooled features from all modalities 
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Application: CM Phenotype Discovery

• 1,052 participants from the Hispanic Community Health Study (HCHS) 

• 2 covariates: age and gender

• 10 continuous and categorical modalities of CM risk factors

▪ Sleep Measures 

▪ Epworth Sleepiness Scales (ESS)

▪ Women’s Health Initiative Insomnia Rating Scales (WHIIRSs)

▪ Alternative Healthy Eating Indices (AHEIs)

▪ Global Physical Activity Questionnaire (GPAQ)

▪ HCHS Acculturation 

▪ Center for Epidemiologic Studies Depression Scales (CES-D)

▪ State-Trait Anxiety Inventories (STAIs)

▪ Clinical Characteristics
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Results

• Identified 3 CM phenotypes: 

24

The multi-modal data 

achieves a better 

cluster separation. 



Results

• Identified 3 CM phenotypes: 

25

Mental Health 
(CES-D1)

Sleep Condition2
Cardiometabolic 

Health (FRS3)

Cluster 1 (456) Healthy Healthy Healthy

Cluster 2 (449) Worse** Mild Mild***

Cluster 3 (147) Mild Worse*** Worse***

1: The Center for Epidemiological Studies Depression Score
2: Measured by Apnea/Hypopnea Index, SpO2, heart rate, and time spent in loud snoring
3: Framingham Risk Score
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Federated function-on-function regression with an 
efficient gradient boosting algorithm for privacy-

preserving telemedicine

27

Yu Ding, Carlos Costa, and Bing Si



Obstructive Sleep Apnea (OSA) 

• Sleep-related breathing disorder

• Associated with neurocognitive and 
cardiovascular diseases

28Dangers of Untreated Sleep Apnea: Memory, Cardiac, Diabetes, Quality of Life, Sleepiness, Depression, Automobile Accidents, and Death

Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine. 2019 Aug 1;7(8):687-98.

• OSA affects almost 1 billion people but is 
underdiagnosed in the population. 



OSA Telemedicine
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Wearable devices:
• Make at-home sleep study feasible 
• Offer opportunities for cost-effective 

telemedicine of OSA

Current diagnostic approach: 
• Manually scored by certified technicians
• Apnea-Hypopnea Index (AHI): frequency 

of adverse respiratory events 
• Labor-intensive & subjective

Research Problem: 
• Predict the functional AHI from functional bio-signal features and non-functional clinical characteristics 
• Facilitate automated diagnosis and telemedicine of OSA

Privacy?                            Efficiency? 



Limitations of Existing Work

• Functional Regression

▪ Scalar-on-function (Müller & Yao, 2008; Wang et al., 2017)

▪ Function-on-scalar (Zhang et al., 2022) 

▪ Function-on-function

• No variable selection (Chiou et al., 2016; Iwaizumi and Kato, 2018)

• Computationally expensive (Ivanescu et al., 2015; Sun et al., 2018; Luo and Qi, 2017)

• Not privacy-preserving
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• Federated Learning (FL)

▪ Privacy-preserving 

▪ Not for function-on-function regression



Proposed: Federated Learning of Functional Regression

• Develop a novel Federated Learning (FL) algorithm for function-on-function regression 

with variable selection, coupled with an efficient optimization algorithm featuring two key 

innovations:  

▪ Gradient Boosting (GB) is leveraged for model estimation with variable selection, 

known to be computationally-efficient.

▪ Least Squares Approximation (LSA) is deployed for FL, proven to be both 

communicationally- & statistically-efficient. 

• Apply the proposed method to predict disease severity from functional and non-functional 

data, aiming to facilitate automated diagnosis and telemedicine for OSA.
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Mathematical Formulation

• Notations
▪ 𝑦𝑛(𝑡) : Functional response for subject 𝑛

▪ 𝒙𝑛 = 𝑥𝑛1(𝑡), ⋯ , 𝑥𝑛𝑝(𝑡), ⋯ , 𝑥𝑛𝑃(𝑡)
𝑇
: Functional or non-functional predictors for subject 𝑛

▪ 𝛽𝑝 𝑠, 𝑡 : Bivariate coefficient function for predictor 𝑝

▪ 𝑁: Number of subjects; 𝑃: Number of predictors; 𝑇: Sampling period, i.e.,  𝑡 ∈ 𝑇

• Assumption
▪ Double expansion of 𝛽𝑝 𝑠, 𝑡  on basis systems 𝜽 & 𝜼 with 𝐾1 and 𝐾2 functions:

𝛽𝑝 𝑠, 𝑡 = 𝜽 𝑠 𝑇𝐁𝑝𝜼 𝑡

▪ Function-on-function regression for subject 𝑛: 

        𝑦𝑛 𝑡 = σ𝑝=1
𝑃 𝑠∈𝑇׬

𝑥𝑛𝑝 𝑠 𝛽𝑝 𝑠, 𝑡 𝑑𝑠 + 𝜀𝑛 𝑡

   = σ𝑝=1
𝑃 ℎ𝑝(𝑡) + 𝜀 𝑡  

32

Base learner: ℎ𝑝 𝑡 = 𝒛𝑛𝑝𝐁𝑝𝜼 𝑡  where 𝒛𝑛𝑝 = 𝑠∈𝑇׬
𝑥𝑛𝑝 𝑠 𝜽 𝑠 𝑇𝑑𝑠 

𝐁𝑝 ∈ 𝑹𝐾1×𝐾2



Gradient Boosting (GB) for Function-on-function Regression

• GB aims to solve the following optimization:

   𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 σ𝑛=1
𝑁 𝑡∈𝑇׬

𝑦𝑛 𝑡 − 𝑓 𝑡, 𝒛𝑛  2𝑑𝑡        

•  In the ω-th iteration: 

▪ Computes the negative gradient of the loss function with respect to 𝑓, i.e., 𝒖 ω ∈ 𝑅𝑁×1 = − ฬ
𝜕𝑙

𝜕𝑓 𝑓 =𝑓 ω−1  

▪ Fit each base learner ℎ𝑝 𝑡 = 𝒛𝑛𝑝𝐁𝑝𝜼 𝑡  for 𝑝 = 1, … , 𝑃 to the negative gradient 𝒖 ω

                                    ෡𝐁𝑝
ω

= argmin
𝐁𝑝

σ𝑛=1
𝑁 𝑡∈𝑇׬

𝑢𝑛
ω

𝑡 − 𝒛𝑛𝑝𝐁𝑝𝜼 𝑡
2

𝑑𝑡 

▪ Update the model using the best learner with the minimal residual ℎ𝑝∗
ω

= 𝒛𝑛𝑝
෡𝐁𝑝∗

ω
𝜼 𝑡

𝑓 ω 𝑡  =  𝑓 ω−1 𝑡  + 𝜈ℎ𝑝∗
ω

33

Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)
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Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)

Proposition 1: Assume 𝐙 ∈ 𝑹𝑁×𝐾1, 𝐁 ∈ 𝑹𝐾1×𝐾2, two functional vectors 𝒖 𝑡  and 𝜼 𝑡  where 𝒖 𝑡 =

𝑢1 𝑡 , ⋯ , 𝑢𝑁 𝑡
𝑇
and 𝜼 𝑡 = 𝜂1 𝑡 , ⋯ , 𝜂𝑁 𝑡

𝑇
, and 𝐽𝜂𝜂  = 𝑡∈𝑇׬

𝜼 𝑡 𝜼𝑇 𝑡 d𝑡. For the optimization problem

                                             𝐁∗  =  argmin
𝐁

t∈T׬
𝐮 t − 𝐙𝐁𝛈 t 2dt,  

the optimal solution is 

                                  𝑣𝑒𝑐 𝐁∗ = 𝐽𝜂𝜂 ⊗ 𝐙𝑇𝐙
−1

𝑣𝑒𝑐 𝐙𝑇 𝑡׬
𝒖 𝑡 𝜼𝑇 𝑡 𝑑𝑡 . 

In each GB iteration, the optimization problems can be solved analytically. Computational 
Efficiency



• Notations:

▪ 𝐾: Number of local servers; 𝑁: Number of subjects; 𝑁𝑘  : Number of subjects in Server 𝑘

▪ 𝑆𝑘 contains subjects in Server 𝑘 for 𝑘 = 1, … , 𝐾; 𝑆 = 1, … , 𝑁 =  U𝑘=1
𝐾 𝑆𝑘  

• FL Model: 
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“One-shot” LSA-based 
aggregator for FL

෡𝐁𝑝 = σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 −1

σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 ෩𝐁𝑝,𝑘
∗   

Communicational
Efficiency

• Notations:

▪ 𝐾: Number of local servers; 𝑁: Number of subjects; 𝑁𝑘  : Number of subjects in Server 𝑘

▪ 𝑆𝑘 contains subjects in Server 𝑘 for 𝑘 = 1, … , 𝐾; 𝑆 = 1, … , 𝑁 =  U𝑘=1
𝐾 𝑆𝑘  

• FL Model: 

 
 

36

Methodological Contribution: federated Gradient Boosting 
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≈ 𝑁−1  σ𝑘=1
𝐾 σ𝑛∈𝑆𝑘

𝑙𝑛,𝑝  ෩𝐁𝑝,𝑘
∗ + 𝑁−1  σ𝑘=1

𝐾 σ𝑛∈𝑆𝑘
𝑙𝑛,𝑝

′  ෩𝐁𝑝,𝑘
∗ 𝑇

𝐁𝑝 − ෩𝐁𝑝,𝑘
∗  +𝑁−1  σ𝑘=1

𝐾 σ𝑛∈𝑆𝑘
𝐁𝑝 − ෩𝐁𝑝,𝑘

∗ 𝑇
𝑙𝑛,𝑝

′′  ෩𝐁𝑝,𝑘
∗ 𝐁𝑝 − ෩𝐁𝑝,𝑘

∗  

Not include 𝐁𝑝 Becomes zero Least Squares Approximation (LSA)

Local models 

(𝑘 = 1, … , 𝐾) 

Global model

Taylor’s Expansion at local optimal solution ෩𝐁𝑝,𝑘
∗  

෩𝐁𝑝,𝑘
∗ = argmin

𝐁𝑝

𝑁𝑘
−1 σ𝑛∈𝑆𝑘

𝑙𝑛,𝑝 𝐁𝑝  

෩𝐁𝑝
∗ = argmin

𝐁𝑝

𝑁−1 σ𝑘=1
𝐾 σ𝑛∈𝑆𝑘

𝑙𝑛,𝑝 𝐁𝑝    
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The proposed LSA estimator ෡𝐁𝑝 achieves the same asymptotic normality 

as the global estimator ෩𝐁𝑝
∗ . 

Statistical 
Efficiency

Theorem 1 (Global asymptotic normality): We denote the asymptotic covariance matrix of 

the global estimator ෩𝐁𝑝
∗  as 𝚺𝑝. Given certain statistical regularity conditions and 𝐾 ≪ 𝑁, we 

have 𝑁 𝑣𝑒𝑐(෡𝐁𝑝) − 𝑣𝑒𝑐(𝐁𝑝,0) →𝑑 𝑁(0, 𝚺𝑝) , which indicates that the proposed LSA 

estimator ෡𝐁𝑝 achieves the same asymptotic normality as the global estimator ෩𝐁𝑝
∗ .



Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)
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Iterate Until Convergence

     Local Servers: 

o Update local models (Proposition 1)

o Closed-form GB estimators ෩𝐁𝑝,1
∗ , …, ෩𝐁𝑝,𝐾

∗

o Computational efficiency

o Send local parameters to the central server

     Central Server: 

o Global aggregation (Theorem 1)

o LSA-based global aggregator ෡𝐁𝑝

o Global asymptotic normality: Statistical efficiency

o One-shot: Communicational efficiency

o Send back parameter updates to local servers

෡𝐁𝑝

෩𝐁𝑝,1
∗ ෩𝐁𝑝,𝑘

∗ ෩𝐁𝑝,𝐾
∗



Simulation Study - Setup

• Sample size: N = 1,000

• Number of predictors: P = 20 (5 effective & 15 dummy)

• Coefficient function: 𝛽𝑝 𝑠, 𝑡  = 𝝋 𝑠 𝑇𝐁𝑝𝝋 𝑡

▪ 𝐁𝑝 is sampled from 𝑁 1, 0.5  for effective predictor 𝑝.

▪ 𝐁𝑝 is set to be 0’s for dummy predictor 𝑝. 

• Functional predictors & response:

▪ 𝑥𝑛𝑝 𝑡 = σ𝑘 𝑐𝑝𝑘𝜑𝑘 𝑡      𝑐𝑝𝑘  ~ 𝑈 −1, 1 + 𝑒𝑁(0.1×𝑝, 1)

▪ 𝑦𝑛 𝑡𝑖 = σ𝑝=1
𝑃 σ𝑖′ 𝑥𝑛𝑝 𝑠𝑖′ 𝛽𝑝 𝑠𝑖′ , 𝑡𝑖 + σ𝑘 𝑒𝑝𝑘𝜑𝑘 𝑡𝑖   𝑒𝑝𝑘 ~ 𝑁(0, 1)
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Simulation Study - Performance of the proposed fed-GB-LSA

• Mean Absolute Percentage Error (MAPE): 

   𝑀𝐴𝑃𝐸 =
100%

𝑁𝑇
σ𝑛=1

𝑁 σ𝑡=1
𝑇 𝑌𝑛𝑡−𝐹𝑛𝑡

𝑌𝑛𝑡
 

• We distribute the data (N = 1,000) across different numbers of servers.
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Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

• fed-GB-LSA:         ෡𝐁𝑝 = σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 −1

σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 ෩𝐁𝑝,𝑘
∗  

• fed-GB-Average:  ෡𝐁𝑝 =  σ𝑘=1
𝐾 𝑁𝑘

𝑁
෩𝐁𝑝,𝑘

′

• We increase # of servers (100 samples per server).
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Table 2. Comparison of fed-GB-LSA and fed-GB-Average for MAPEs 

K = 5 K = 10 K = 15 K = 20

Fed-GB-LSA 1.46% 1.19% 0.98% 0.83%

fed-GB-Average 1.74% 2.00% 2.05% 1.84%



Application for OSA telemedicine and diagnosis

• Data description

▪ This dataset includes 408 subjects from the Sleep Heart Health Study (SHHS). 

• Non-functional features

▪ Age (year), gender (female or male), BMI (kg/m2), and ethnicity (Hispanic or not).

• Functional features

▪ Bio-signal features extracted from the overnight sleep study

▪ Each epoch includes 13 ECG-derived features 28 EEG-derived features.  

42

Heart Rate Variability (HRV) analysis for ECG signals Power Spectral Density (PSD) analysis for EEG signals



Results

• Global function-on-function regression model: 

▪  21.6% MAPE with 10-fold Cross Validation 

• To mimic the FL setting, the dataset is randomly partitioned into several “local servers”: 

43

The proposed fed-GB-LSA sheds light on 

OSA diagnosis and telemedicine with 

privacy-preservation.

Increased healthcare accessibility 

Improved public health



Outline

• Introduction

▪ Statistical machine learning and Data fusion for Precise Medicine and Public Health

• Disease diagnosis and phenotyping

▪ Unsupervised learning of multi-faced medical data for phenotype discovery

• Privacy-preserving telemedicine

▪ Federated learning of functional data for privacy-preserving telemedicine

• Conclusions and Future Works
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Conclusions
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Challenges:
1. Privacy and Security
2. Mixed types, numerical, ordinal, categorical, functional, etc.
3. Lack of a framework to include and distill knowledges from different resources.



Future Works
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1. Multi-Modal Functional Structural Equation Modeling
2. Functional Gaussian Graphical Model with latent factors
3. Phenotype discovery in Federated Learning 



Q&A

Thank you!
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