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Introduction

« Currently, people spend at least of their household
budgets on health expenses for themselves, a sick child or other family
member. For almost people these expenses are high enough
to push them into extreme poverty, forcing them to survive on just or
less a day.

—World Health Organization

* The digital divide is now a matter of life and death for people who are
unable to access essential health-care information. It is threatening to
become the new face of inequality, reinforcing the social and economic
disadvantages suffered by women and girls, people with disabilities and
minorities of all kinds.

- UN Secretary-General Antonio Guterres in the pandemic period



Introduction

« How to implement statistical machine learning technigues to meet the
general benefiting objective under the constraints of limited healthcare

capacity and costs?

« Answer: Precise Medicine and Public Health by data mining on the
patients’ health records

» Challenge:
1. Privacy and Security
2. Mixed types, numerical, ordinal, categorical, functional, etc.

3. Lack of a framework to include and distill knowledges from different
resources.



Outline

» Disease diagnosis and phenotyping
= Unsupervised learning of multi-faced medical data for phenotype discovery




A novel sparse generalized structural equation
modeling with structured sparsity for subgroup
discovery from multi-modal mixed-type data

Yu Ding, Bing Si




Precision Medicine

Traditional Medicine
One Treatment Fits All

Precision Medicine

Phenotype Discovery



Precision Medicine

. Multi-modal Health Data

* Medical Imaging

* Electronic Health Records
Health Surveys

 Smart Sensing data
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Cardiometabolic (CM) Health: The Leading Cause of Death
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Heterogeneity in CM Risk Factors: A Major Challenge in CM
Health Promotion
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Limitations of Existing Research

» Clinical models: Specific to one risk modality
= Aim to discover underlying mechanism between the risk factors and CM health
= Lack a comprehensive consideration of multi-modal risk factors

« Statistical clustering models

= Gaussian Mixture Model (GMM)
» Not suitable for mixed-type data including continuous, nominal, and ordinal
* Mixed-GMMs

* Not consider latent factor structures

=  Factor Mixture Model (FMM)
» Considers modality-specific latent factors for dimension reduction and knowledge discovery
* Not consider either mixed-type data or sparse variable selection



Proposed: Multi-modal Mixed-type Factor Mixture Model
with Hierarchical Selection (M2-FMM-hier)

« Develop a Multi-modal Mixed-type Factor Mixture Model capable of hierarchical selection
(M2-FMM-hier) for modalities and features

* |If a modality is uninformative to clustering, all its features will be excluded.

» Feature selection happens in the modalities that remain.

« Enable modality-specific latent factor extraction to increase model interpretability and
facilitate medical knowledge discovery.

* Apply M2-FMM-hier for phenotype discovery from high-dimensional multi-modal mixed-
type health data for targeted intervention and Precise Medicine.



Mathematical Formulation: M2-FMM-hier

Link modality-wise mixed-type features x\™ with latent
Multi-modal - """*(M) I factors n\"™ and covariates z\™ :
features F Covariates fori=1,.,Nandm = 1, ..., M;.

' (age, gender)

Z(m) log (1—P(x§m) < cxlp) =a T+ L(m)ni + B(m)zi + &
i i

fori=1,..,.Nandm= M; +1,..,M; + M,.

Modal-wise

latent factors _ _
Link latent factors with latent phenotypes:

—_—) nlgm) — uMms; + s;l(m)
Latent

clusters/phenotypes —) Prior distribution of phenotypes:

(sq, ..., Sk) T~ multinomial (wy, ..., wg)




Mathematical Formulation: M2-FMM-hier

« Complete-data (observed & latent) log-likelihood function:
L(f(0; XKy Zo, Hy Wi, ) )
Z log(f(x ZmlH G)1)) + 211;4114;\/11\11110g(f(xm; Zmle; 92)) +Z%=1 log(f(Hmls; 93)) + log(f(S; 64))-

......... > Features

--> Covariates

---> Latent factors




Mathematical Formulation: M2-FMM-hier

« Complete-data (observed & latent) log-likelihood function:
(£ (03 Ximy Zon, B Yok, 5) )
= Zome1108(f Koy Zon [Hin; 1)) + %1 108(f Koy Zon [ Hon; ©2)) + Zi_y 10g(f (Hins; ©3)) + log(f (5 0,)) -

« Optimization with double [,; penalization:

min1(0) = ~1(f(0; K, Zm H J=1,5) ) + A2 Zhicy [0, +2, 21 T5_s || 157 ||2

subjectto E (ng’")) =0,Var (m@) = I (identifiability constraints)
Novel Property of the optimization: hierarchical selection of modalities and features

_ T m-th modalit
XSk = 1~N(Lmum,k t Bnz, L2yl + ‘Pm) k-th cluster ’

e Ifu™ =0, then the m!"™ modality is uninformative to phenotype clustering.
« Ifu™ = 0and lg"') = 0, then the p-th feature is uninformative to phenotype clustering.



Methodological Contribution: Gauss-Hermite Expectation-
Majorization-Minimization (GH-EMM) Algorithm

 Traditional Expectation-Maximization (EM) framework does not suffice.
= E-step: derive Q(€;0U™)2Ey w o wm o0-0 {10 X, Hin Ji=1,5)}  (¥)

= M-step: minimize —q(e;0Y)




Methodological Contribution: Gauss-Hermite Expectation-
Majorization-Minimization (GH-EMM) Algorithm

 Traditional Expectation-Maximization (EM) framework does not suffice.
= E-step: derive Q(€;0U™)2Ey w o wm o0-0 {10 X, Hin Ji=1,5)}  (¥)
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m - minimi (-1 ¥
M'Step- minimize _Q(@;O ! ) Non-analytical terms

Monte Carlo EM: computationally expensive
* Gauss Hermite Quadrature

T
f exp{—x?}g(x)dx = Z weg(xe)
t=1

X roots of the Hermite polynomial Hr(x)
2T+1T'\/E

[Hr41(x¢)]?




Methodological Contribution: Gauss-Hermite Expectation-
Majorization-Minimization (GH-EMM) Algorithm

 Traditional Expectation-Maximization (EM) framework does not suffice.
= E-step: derive Q(€:;0U™)2Ey w o wm o0-0 {10 X, Hin Ji=1,5)}  (¥)

_ M1+M, M
_ m) R(m) gl M { @™ L) gom) (m)} ( k) x(mink )

| | |
Numerical modalities Categorical modalities Latent factors

=  M-step: m‘inimize —-Q(e;0UD)

l,1- penalized non-smooth optimization problems
Conventional solvers (e.g., BCGD and Nesterov’s) are slow.
Majorization-Minimization (MM)

) f(6):Objective function

Jn(0): Majorizing surrogate




E-step Enabled by Gauss-Hermite (GH)

Definition 1 (Multivariate GH approximation): Given vector z with rank(z) = Q, and function g € C?>7: R? — R by applying

Hermite interpolation , we have

f exp{—z"z}g(z)dz ~ t1—1 ?Q 1 We, ™ (Uth(Zt)

where § € RY is the integration set, z, = (Z ,th)T and Zg are the roots of Hermite polynomial of order T, Hy(x) =
2T+1T'\/E

2.dT _ 2 I ' '
(—1D)'e* —Fze™ fort, €{1,,T}and q € {1,--,Q}. The weight, w, , is given by w,, = [Hr41(2e))?”

Proposition 1 (The GH approximate error is bounded): If the integration set S in Definition 1 is closed, the GH approximation

T

2T (2T)! —— g1 (&), reduces to zero for a sufficiently large T.

error, determined by ——

E-step: The non-analytical terms can be explicitly approximated by GH Quadrature.



M-step Integrated with Majorization Minimization (MM)

Theorem 1 (Convergence of the MM algorithm): Assume the following optimization problem where I denotes the parameters to
be estimated and D denotes the data:

mlin —(I|D) + ALl

If the objective function ¢ (I|D) is differentiable and convex with respect to I and its first-order derivative ¢'(I|D) is Lipschitz

continuous, the MM algorithm with the first-order surrogate function is guaranteed to achieve the Karush—Kuhn-Tucker (KKT)
conditions upon convergence.

Proposition 2 (Lipschitz continuity): The sub-optimization problems are jointly convex and their first-order derivatives are

Lipschitz continuous with respect to {L™,B™} for m=1,...,M;, {L™ BM™} for m=M; +1,...,M; + M,, and
{u(m"‘)}:zl form = 1, ...., My + M,, respectively.

M-step: The objective functions satisfy the Lipschitz continuity condition and thus can be
efficiently optimized by the MM algorithm.



Simulation Study — Clustering Accuracy

« Competing methods applied to cluster:
» Pooled numerical modalities
» Pooled categorical modalities

 Pooled features from all modalities
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Application: CM Phenotype Discovery

« 1,052 participants from the Hispanic Community Health Study (HCHS)
« 2 covariates: age and gender

» 10 continuous and categorical modalities of CM risk factors
= Sleep Measures
= Epworth Sleepiness Scales (ESS)
= Women’s Health Initiative Insomnia Rating Scales (WHIIRSS)
= Alternative Healthy Eating Indices (AHEIS)
= Global Physical Activity Questionnaire (GPAQ)
= HCHS Acculturation
= Center for Epidemiologic Studies Depression Scales (CES-D)
= State-Trait Anxiety Inventories (STAIS)
= Clinical Characteristics



Results

* |dentified 3 CM phenotypes:
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Results

 |dentified 3 CM phenotypes:
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Mental Health Sleep Condition: Cardiometabolic
(CES-Da1) Health (FRS3)
Cluster 1 (456) Healthy Healthy Healthy
Cluster 2 (449) Worse** Mild Mild***
Cluster 3 (147) Mild Worse*** Worse***

1: The Center for Epidemiological Studies Depression Score

2: Measured by Apnea/Hypopnea Index, Sp02, heart rate, and time spent in loud snoring
3: Framingham Risk Score



Outline

* Privacy-preserving telemedicine
» Federated learning of functional data for privacy-preserving telemedicine




Federated function-on-function regression with an
efficient gradient boosting algorithm for privacy-
preserving telemedicine

Yu Ding, Carlos Costa, and Bing Si



Obstructive Sleep Apnea (OSA)
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* Sleep-related breathing disorder

* Associated with neurocognitive and * OSA affects almost 1 billion people but is
cardiovascular diseases underdiagnosed in the population.

Dangers of Untreated Sleep Apnea: Memory, Cardiac, Diabetes, Quality of Life, Sleepiness, Depression, Automobile Accidents, and Death

Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine. 2019 Aug 1;7(8):687-98.



OSA Telemedicine
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Current diagnostic approach:

* Manually scored by certified technicians

* Apnea-Hypopnea Index (AHI): frequency
of adverse respiratory events

* Labor-intensive & subjective

Research Problem:

e Predict the functional AHI from functional bio-signal features and non-functional clinical characteristics
e Facilitate automated diagnosis and telemedicine of OSA

Wearable devices:

* Make at-home sleep study feasible

* Offer opportunities for cost-effective
telemedicine of OSA

Privacy? Efficiency?



Limitations of Existing Work

» Functional Regression
=  Scalar-on-function (Miiller & Yao, 2008; Wang et al., 2017)
=  Function-on-scalar (zhang et al., 2022)
=  Function-on-function
* No variable selection (Chiou et al., 2016; Iwaizumi and Kato, 2018)
« Computationally expensive (lvanescu et al., 2015; Sun et al., 2018; Luo and Qi, 2017)
» Not privacy-preserving Central Server () Sending local parameters

Secure aggregation

3) Sending back parameter updates

« Federated Learning (FL)
=  Privacy-preserving
= Not for function-on-function regression

Updating local models

Local Server 1 Local Server k Local Server K



Proposed: Federated Learning of Functional Regression

» Develop a novel Federated Learning (FL) algorithm for function-on-function regression
with variable selection, coupled with an efficient optimization algorithm featuring two key
Innovations:

= Gradient Boosting (GB) is leveraged for model estimation with variable selection,
known to be computationally-efficient.

» Least Squares Approximation (LSA) is deployed for FL, proven to be both
communicationally- & statistically-efficient.

* Apply the proposed method to predict disease severity from functional and non-functional
data, aiming to facilitate automated diagnosis and telemedicine for OSA.



Mathematical Formulation

* Notations
=  y,(t) : Functional response for subject n
. X, = {xnl(t), “t, Xnp (L), ---,xnp(t)}T: Functional or non-functional predictors for subject n

= B,(s,t): Bivariate coefficient function for predictor p
= N: Number of subjects; P: Number of predictors; T: Sampling period, i.e., t €T

« Assumption
= Double expansion of 5,(s,t) on basis systems 6 & n with K; and K, functions:
Bp(s,t) = 6(s)"Byn(t) By € R
=  Function-on-function regression for subject n:
yn(t) = 1F9)=1 SeTxnp(S) ﬂp(sr t)ds + &, (t)

= Yp=1/hp (&) [+ ()

Base learner: h,,(t) = z,,,B,n(t) where z,,,, = fSET Xnp(S) 0(s)"ds



Methodological Contribution: federated Gradient Boosting
algorithm with the Least Squares Approximation (fed-GB-LSA)

Gradient Boosting (GB) for Function-on-function Reqgression
« GB aims to solve the following optimization:

fr = argming Snoy fier(mm(®) = f(t,2,) )*dt

« In the w-th iteration:
=  Computes the negative gradient of the loss function with respect to f, i.e., u(® € R¥*! = —g—; o
f=rle-

= Fiteach base learner h,(t) = z,,B,n(t) forp = 1, ..., P to the negative gradient u(®)

2
By = argmin B, fep (147 (0) — 2oy By (®))
P
=  Update the model using the best learner with the minimal residual hz(;f) = znpﬁzg‘i’)n(t)

O = F@O D) +vhy



Methodological Contribution: federated Gradient Boosting
algorithm with the Least Squares Approximation (fed-GB-LSA)

Proposition 1: Assume Z € RV*K1 B € R¥1*Kz two functional vectors u(t) and n(t) where u(t) =
(s (0), -+, uy(®)) and 9(©) = (71(8), -, nw(®) ', and Jpy = J,., n(©N" (£)dt. For the optimization problem
B* = arg];nin Jeerllu(®) = ZBn(0)||*dt,
the optimal solution is )
vec(B*) = (Jyy ® @72)) wvec (27 [, u(t)y”(t)dt).

— Comp.u.tational
Efficiency

In each GB iteration, the optimization problems can be solved analytically.




Methodological Contribution: federated Gradient Boosting
algorithm with the Least Squares Approximation (fed-GB-LSA)

» Notations:
. K: Number of local servers; N: Number of subjects; N, : Number of subjects in Server k

= 5, contains subjects in Server k fork =1,...,K; S ={1,...,N} = UK_.S,

 FL Model:

@ Sending local parameters
Secure aggregation

3) Sending back parameter updates

Central Server

Updating local models

Local Server 1 Local Server k Local Server K



Methodological Contribution: federated Gradient Boosting
algorithm with the Least Squares Approximation (fed-GB-LSA)

» Notations:
. K: Number of local servers; N: Number of subjects; N, : Number of subjects in Server k

= 5, contains subjects in Server k fork =1,...,K; S ={1,...,N} = UK_.S,

* FLModel:  Local models B, = argmlnNk ' Ynes, lnp(Bp)

(k=1,..,K) By
Global model EZ = al‘%min N~ ¥r-1 Znesk ln,p(BP)
p

‘ Taylor’s Expansion at local optimal solution ﬁ*

~ N7 TRy Bnesy bnp (Bpi) + V71 2ot Bnes, o (Bpie) (Bp = By i) +N 70 Zhey s, (By — By i) (B k) (B — By i)

\ ]\ J | }
| | |

Not include B, Becomes zero Least Squares Approximation (LSA)
-1
_ kK New 71 K Neow “1gms
- (Zk=172p,k ) (Zkzlﬁzp,k Bp,k)

“One-shot” LSA-based — Communicational
aggregator for FL Efficiency




Methodological Contribution: federated Gradient Boosting
algorithm with the Least Squares Approximation (fed-GB-LSA)

Theorem 1 (Global asymptotic normality): We denote the asymptotic covariance matrix of

the global estimator ﬁ,*, as X,,. Given certain statistical regularity conditions and K <« VN, we
have +N(vec(B,) —vec(B,o)) =4 N(0,Z,) , which indicates that the proposed LSA

estimator ﬁp achieves the same asymptotic normality as the global estimator E;.

The proposed LSA estimator B, achieves the same asymptotic normality : Statistical
as the global estimator B;,. Efficiency



Methodological Contribution: federated Gradient Boosting
algorithm with the Least Squares Approximation (fed-GB-LSA)

Ilterate Until Convergence

Local Servers:
B, —T o Update local models (Proposition 1)

p—T’ o Closed-form GB estimators B

D *
p’l, ey Bp’K

4 o Computational efficiency
o Send local parameters to the central server
B,1 B, B,k Central Server:

o Global aggregation (Theorem 1)
o LSA-based global aggregator ﬁp

o Global asymptotic normality: Statistical efficiency
o One-shot: Communicational efficiency
o Send back parameter updates to local servers



Simulation Study - Setup

Sample size: N = 1,000
Number of predictors: P = 20 (5 effective & 15 dummy)

Coefficient function: 8,(s,t) = @(s)"B,e(t)
= B, is sampled from N(1, 0.5) for effective predictor p.
= B, issettobe 0’'s for dummy predictor p.

Functional predictors & response:
Xnp(£) = X cprere(t)  cppe ~ U(=1,1) + NOPP D
= y(t) = 5:1 it Xnp(8;)Bp (s, 1) + Xk epr @i (t1) epr ~ N(0,1)



Simulation Study - Performance of the proposed fed-GB-LSA

« Mean Absolute Percentage Error (MAPE):
Z7I¥=1 Z’IZ;=1

« We distribute the data (N = 1,000) across different numbers of servers.
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Global Model "
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—=— Local Model /
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Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

~1
 fed-GB-LSA: B, = (Z’k{ 11;]\,"229;( ) (Zlk{ 11\1:,k2pk )
- fed-GB-Average: B, = YX_, N"

* We increase # of servers (100 samples per server).

Table 2. Comparison of fed-GB-LSA and fed-GB-Average for MAPESs

I e T T e R (T

Fed-GB-LSA 1.46% 1.19% 0.98% 0.83%

fed-GB-Average WY 2.00% 2.05% 1.84%




Application for OSA telemedicine and diagnhosis

» Data description
» This dataset includes 408 subjects from the Sleep Heart Health Study (SHHS).
« Non-functional features

= Age (year), gender (female or male), BMI (kg/m2), and ethnicity (Hispanic or not).
» Functional features

» Bio-signal features extracted from the overnight sleep study
= Each epoch includes 13 ECG-derived features 28 EEG-derived features.
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Heart Rate Variability (HRV) analysis for ECG signals Power Spectral Density (PSD) analysis for EEG signals




Results

 Global function-on-function regression model:
. 21.6% MAPE with 10-fold Cross Validation

 To mimic the FL setting, the dataset is randomly partitioned into several “local servers’:

Global Model ‘

|+ Proposed fed-GB-LSA The proposed fed-GB-LSA sheds light on
—=— Local Model OSA diagnosis and telemedicine with
privacy-preservation.

/ Increased healthcare accessibility

" Improved public health
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Outline

 Conclusions and Future Works




Conclusions

Central Server (1) sending local parameters
Secure aggregation

Sending back parameter updates

o

---------> Features

. . . ---> Covariates ’ S
(1) M)
@ e @ ces ’L‘ ------- > Latent factors
- rY T

Updating local models

cememmeeeeme=—--> Cluster indicator

Local Server 1 Local Server k Local Server K

Challenges:

1. Privacy and Security

2. Mixed types, numerical, ordinal, categorical, functional, etc.

3. Lack of a framework to include and distill knowledges from different resources.



Future Works

Central Server (1) Sending local parameters
Secure aggregation

Sending back parameter updates

o

---------> Features

. . . ---> Covariates ’ S
(1) M)
@ e @ ces ’L‘ ------- > Latent factors
- rY T

Updating local models

cememmeeeeme=—--> Cluster indicator

Local Server 1 Local Server k Local Server K

1. Multi-Modal Functional Structural Equation Modeling
2. Functional Gaussian Graphical Model with latent factors
3. Phenotype discovery in Federated Learning



Q&A

Thank you!
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