Federated function-on-function regression with an efficient gradient boosting algorithm for privacy-preserving telemedicine

Yu Ding

Ph.D. Candidate

Systems Science and Industrial Engineering

State University of New York (SUNY) at Binghamton

Advisor: Dr. Bing Si

Outline

- **Background**
	- Telemedicine for Obstructive Sleep Apnea (OSA)
- **Proposed Method**
	- Federated Gradient Boosting algorithm with the Least Squares Approximation
- **Results**
	- **E** Simulation & Case Study
- **Conclusion and Future Work**

Obstructive Sleep Apnea (OSA)

- Sleep-related breathing disorder
- Associated with neurocognitive and cardiovascular diseases

• OSA affects almost 1 billion people but is underdiagnosed in the population.

OSA Telemedicine

Wearable devices:

- Make at-home sleep study feasible
- Offer opportunities for cost-effective telemedicine of OSA

Current diagnostic approach:

- Manually scored by certified technicians
- Apnea-Hypopnea Index (AHI): frequency of adverse respiratory events
- Labor-intensive & subjective

Research Problem:

- Predict the functional AHI from functional bio-signal features and non-functional clinical characteristics
- Facilitate automated diagnosis and telemedicine of OSA

Privacy? Efficiency?

Limitations of Existing Work

- Functional Regression
	- Scalar-on-function (Müller & Yao, 2008; Wang et al., 2017)
	- Function-on-scalar (Zhang et al., 2022)
	- Function-on-function
		- No variable selection (Chiou et al., 2016; Iwaizumi and Kato, 2018)
		- Computationally expensive (Ivanescu et al., 2015; Sun et al., 2018; Luo and Qi, 2017)
		- Not privacy-preserving
- Federated Learning (FL)
	- **Privacy-preserving**
	- Not for function-on-function regression

Proposed: Federated Learning of Functional Regression

- Develop a novel Federated Learning (FL) algorithm for function-on-function regression with variable selection, coupled with an efficient optimization algorithm featuring two key innovations:
	- Gradient Boosting (GB) is leveraged for model estimation with variable selection, known to be **computationally-efficient**.
	- Least Squares Approximation (LSA) is deployed for FL, proven to be both **communicationally- & statistically-efficient**.
- Apply the proposed method to predict disease severity from functional and non-functional data, aiming to facilitate automated diagnosis and telemedicine for OSA.

Mathematical Formulation

• **Notations**

- $y_n(t)$: Functional response for subject n
- $x_n = {x_{n1}(t), ..., x_{np}(t), ..., x_{nP}(t)}^T$: Functional or non-functional predictors for subject n
- \bullet $\beta_p(s,t)$: Bivariate coefficient function for predictor p
- **•** N: Number of subjects; P: Number of predictors; T: Sampling period, i.e., $t \in T$

• **Assumption**

Double expansion of $\beta_p(s, t)$ on basis systems $\theta \& \eta$ with K_1 and K_2 functions:

$$
\beta_p(s,t) = \theta(s)^T \mathbf{B}_p \boldsymbol{\eta}(t) \qquad \mathbf{B}_p \in \mathbf{R}^{K_1 \times K_2}
$$

EXECT Function-on-function regression for subject n :

$$
y_n(t) = \sum_{p=1}^P \int_{s \in T} x_{np}(s) \beta_p(s, t) ds + \varepsilon_n(t)
$$

= $\sum_{p=1}^P \left| h_p(t) \right| + \varepsilon(t)$
Base learner: $h_p(t) = z_{np} B_p \eta(t)$ where $z_{np} = \int_{s \in T} x_{np}(s) \theta(s)^T ds$

Gradient Boosting (GB) for Function-on-function Regression

• GB aims to solve the following optimization:

$$
f^* = argmin_f \sum_{n=1}^{N} \int_{t \in T} (y_n(t) - f(t, \mathbf{z}_n))^2 dt
$$

- \cdot In the ω -th iteration:
	- Computes the **negative gradient** of the loss function with respect to f, i.e., $u^{(\omega)} \in R^{N \times 1} = -\frac{\partial l}{\partial s}$ $\partial f|_{f=f}$ [ω-1
	- **Fit each base learner** $h_p(t) = \mathbf{z}_{np} \mathbf{B}_p \boldsymbol{\eta}(t)$ for $p = 1, ..., P$ to the negative gradient $\boldsymbol{u}^{(\omega)}$ and the contract of $\widehat{\mathbf{B}}^{(i)}_{p}$ $\binom{\omega}{\omega}$ = argmin $\overline{\mathbf{B}}_{\boldsymbol{\mathcal{p}}}$ $\sum_{n=1}^{N} \int_{t \in T} \left(u_n^{(\omega)}(t) - \mathbf{z}_{np} \mathbf{B}_p \boldsymbol{\eta}(t) \right)$ 2 dt
	- Update the model using the **best learner** with the minimal residual $h^{\alpha}_{p^*}$ $\mathbf{z}_{np}^{(\omega)} = \mathbf{z}_{np} \mathbf{\widehat{B}}_{p^*}^{(\omega)}$ $\overset{\omega}{\pi}{}^{n}_{\eta}(t)$

$$
f^{(\omega)}(t) = f^{(\omega-1)}(t) + \nu h_{p^*}^{(\omega)}
$$

Proposition 1: Assume $\mathbf{Z} \in R^{N \times K_1}$, $\mathbf{B} \in R^{K_1 \times K_2}$, two functional vectors $\boldsymbol{u}(t)$ and $\boldsymbol{\eta}(t)$ where $\boldsymbol{u}(t)$ = $u_1(t),...,u_N(t)\big)^T$ and $\bm{\eta}(t)=\big(\eta_1(t),..., \eta_N(t)\big)^T$, and $J_{\eta\eta}~=\int_{t\in T}\bm{\eta}(t)\bm{\eta}^T(t)\text{d} t.$ For the optimization problem **Example 20** Service 20 ∗ = argmin $\lim_{\mathbf{B}} \int_{\mathsf{t}\in\mathsf{T}} \lVert \mathbf{u}(\mathsf{t}) - \mathbf{Z}\mathbf{B}\mathbf{\eta}(\mathsf{t}) \rVert^2 \mathrm{d}\mathsf{t},$

the optimal solution is

$$
vec(\mathbf{B}^*) = (J_{\eta\eta} \otimes (\mathbf{Z}^T \mathbf{Z}))^{-1} vec(\mathbf{Z}^T \int_t \mathbf{u}(t) \boldsymbol{\eta}^T(t) dt).
$$

In each GB iteration, the optimization problems can be solved analytically. \rightarrow Computational **Efficiency**

- Notations:
	- **EXECT** EXT Number of local servers; N: Number of subjects; N_k : Number of subjects in Server k
	- **•** S_k contains subjects in Server k for $k = 1, ..., K; S = \{1, ..., N\} = U_{k=1}^K S_k$

Theorem 1 (Global asymptotic normality): We denote the covariance of the local estimator $\widetilde{\mathbf{B}}_{p,k}^*$ as $\pmb{\Sigma}_{p,k},$ i.e., $\pmb{\Sigma}_{p,k} = Cov(vec(\widetilde{\mathbf{B}}_{p,k}^*))$ and let $\pmb{\Sigma}_p = \left(\sum_{k=1}^K \frac{N_k}{N}\right)$ $\frac{N_k}{N} \sum_{p,k} -1$ −1 . Assuming certain regularity conditions, we have $\sqrt{N}(\nu ec(\widehat{\textbf{B}}_p)-\nu ec(\widetilde{\textbf{B}}_p^*))\rightarrow_d N(0,\textbf{\Sigma}_p).$

The proposed LSA estimator $\widehat{\mathbf{B}}_p$ achieves the same asymptotic normality as the global estimator $\widetilde{\mathbf{B}}_p^*.$ **Statistical Efficiency**

Theorem 1 (Global asymptotic normality): We denote the asymptotic covariance matrix of the global estimator $\widetilde{\mathbf{B}}_p^*$ as $\pmb{\Sigma}_p,$ i.e., $\pmb{\Sigma}_p=Ncov(vec(\widetilde{\mathbf{B}}_p^*))$. Given certain statistical regularity conditions and $K \ll \sqrt{N}$, we have $\sqrt{N}(vec(\{B}_p) - vec(\{B}_{p,0})) \rightarrow_d N(0, \Sigma_p)$, which indicates that the proposed LSA estimator $\widehat{\mathbf{B}}_p$ achieves the same asymptotic normality as the global estimator $\widetilde{\mathbf{B}}_p^*.$

The proposed LSA estimator $\widehat{\mathbf{B}}_p$ achieves the same asymptotic normality as the global estimator $\widetilde{\mathbf{B}}_p^*.$ **Statistical Efficiency**

Iterate Until Convergence

Local Servers:

- o Update local models (**Proposition 1**)
	- o Closed-form GB estimators $\widetilde{\mathbf{B}}_{p,1}^*, \dots, \widetilde{\mathbf{B}}_{p,K}^*$
	- o **Computational efficiency**
- o Send local parameters to the central server

Central Server:

- o Global aggregation (**Theorem 1**)
	- LSA-based global aggregator $\widehat{\mathbf{B}}_n$
	- o Global asymptotic normality: **Statistical efficiency**
	- o One-shot: **Communicational efficiency**
- o Send back parameter updates to local servers

Simulation Study - Setup

- Sample size: $N = 1,000$
- Number of predictors: $P = 20$ (5 effective & 15 dummy)
- Coefficient function: $\beta_p(s,t) = \boldsymbol{\varphi}(s)^T \mathbf{B}_p \boldsymbol{\varphi}(t)$
	- **B**_n is sampled from $N(1, 0.5)$ for effective predictor p.
	- **•** B_p is set to be 0's for dummy predictor p.
- Functional predictors & response:
	- $= x_{np}(t) = \sum_k c_{pk} \varphi_k(t)$ $c_{pk} \sim U(-1, 1) + e^{N(0.1 \times p, 1)}$
	- \bullet $y_n(t_i) = \sum_{p=1}^P \sum_{i'} x_{np}(s_{i'}) \beta_p(s_{i'}, t_i) + \sum_k e_{pk} \varphi_k(t_i) e_{pk} \sim N(0, 1)$

Simulation Study - Performance of the proposed fed-GB-LSA

• Mean Absolute Percentage Error (MAPE):

$$
MAPE = \frac{100\%}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} \left| \frac{Y_{nt} - F_{nt}}{Y_{nt}} \right|
$$

• We distribute the data ($N = 1,000$) across different numbers of servers.

Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

- fed-GB-LSA: $\qquad \widehat{{\bf B}}_p=\begin{pmatrix} \sum_{k=1}^K\frac{N_k}{N} \end{pmatrix}$ \boldsymbol{N} $\widehat{\Sigma}_{p,k}$ -1 ⁻¹ $\sum_{k=1}^K \frac{N_k}{N}$ \boldsymbol{N} $\widehat{\Sigma}_{p,k}$ $^{-1}\,{\widetilde{\bf{B}}}_{p,k}^*$
- fed-GB-Average: $\widehat{\mathbf{B}}_p = \sum_{k=1}^K \frac{N_k}{N}$ $\frac{\mathsf{v}_k}{N}\widetilde{\mathbf{B}}_{p,k}^*$
- We increase # of servers (100 samples per server).

Table 2. Comparison of fed-GB-LSA and fed-GB-Average

Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

• fed-GB-LSA:
$$
\widehat{\mathbf{B}}_p = \left(\sum_{k=1}^K \frac{N_k}{N} \widehat{\Sigma}_{p,k}^{-1}\right)^{-1} \left(\sum_{k=1}^K \frac{N_k}{N} \widehat{\Sigma}_{p,k}^{-1} \widetilde{\mathbf{B}}_{p,k}^*\right)
$$

- fed-GB-Average: $\widehat{\mathbf{B}}_p = \sum_{k=1}^K \frac{N_k}{N}$ $\frac{\mathsf{v}_k}{N}\widetilde{\mathbf{B}}_{p,k}^*$
- We increase # of servers (100 samples per server).

Table 2. Comparison of fed-GB-LSA and fed-GB-Average

Application for OSA telemedicine and diagnosis

- Data description
	- This dataset includes 408 subjects from the Sleep Heart Health Study (SHHS).
- Non-functional features
	- Age (year), gender (female or male), BMI (kg/m2), and ethnicity (Hispanic or not).
- Functional features
	- Bio-signal features extracted from the overnight sleep study
	- Each epoch includes 13 ECG-derived features 28 EEG-derived features.

Heart Rate Variability (HRV) analysis for ECG signals Power Spectral Density (PSD) analysis for EEG signals

Results

- Global function-on-function regression model:
	- 21.6% MAPE with 10-fold Cross Validation
- To mimic the FL setting, the dataset is randomly partitioned into several "local servers":

Results

- Global function-on-function regression model:
	- 21.6% MAPE with 10-fold Cross Validation
- To mimic the FL setting, the dataset is randomly partitioned into several "local servers":

Conclusion

- Developed a novel Federated Learning (FL) algorithm for function-on-function regression with variable selection.
- Proposed the first-of-its-kind federated Gradient Boosting algorithm with the Least Squares Approximation (fed-GB-LSA) for efficient FL.
	- Computationally, communicationally, and statistically efficient
- Applied the proposed method to predict disease severity from functional and nonfunctional data, aiming to facilitate automated diagnosis and telemedicine for OSA.
- Federated functional regression with heterogeneity among local servers awaits explorations.

Conclusion and Future Work

- Developed a novel Federated Learning (FL) algorithm for function-on-function regression with variable selection.
- Proposed the first-of-its-kind federated Gradient Boosting algorithm with the Least Squares Approximation (fed-GB-LSA) for efficient FL.
	- Computationally, communicationally, and statistically efficient
- Applied the proposed method to predict disease severity from functional and nonfunctional data, aiming to facilitate automated diagnosis and telemedicine for OSA.
- In the future, we plan to generalize the current framework to explore federated function regression under heterogeneous settings to tackle this common challenge in FL.

Thank you!

