Federated function-on-function regression with an efficient gradient boosting algorithm for privacy-preserving telemedicine

Yu Ding

Ph.D. Candidate

Systems Science and Industrial Engineering

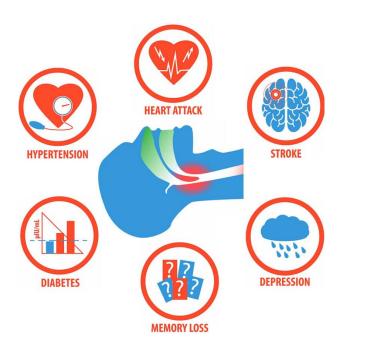
State University of New York (SUNY) at Binghamton

Advisor: Dr. Bing Si

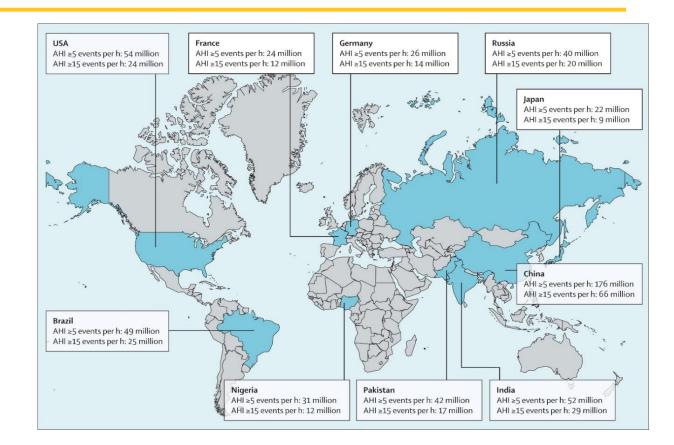
Outline

- Background
 - Telemedicine for Obstructive Sleep Apnea (OSA)
- Proposed Method
 - Federated Gradient Boosting algorithm with the Least Squares Approximation
- Results
 - Simulation & Case Study
- Conclusion and Future Work

Obstructive Sleep Apnea (OSA)



- Sleep-related breathing disorder
- Associated with neurocognitive and cardiovascular diseases



• OSA affects almost 1 billion people but is underdiagnosed in the population.

OSA Telemedicine

Wearable devices:

- Make at-home sleep study feasible
- Offer opportunities for cost-effective telemedicine of OSA

Current diagnostic approach:

- Manually scored by certified technicians
- Apnea-Hypopnea Index (AHI): frequency of adverse respiratory events
- Labor-intensive & subjective

Research Problem:

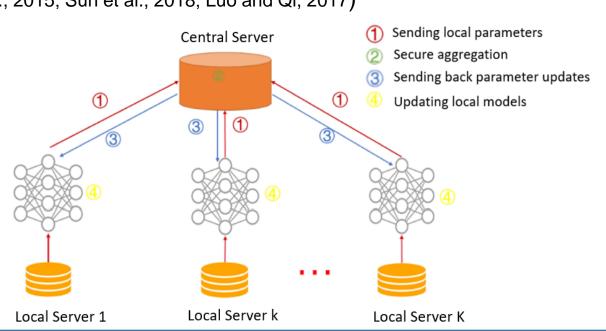
- Predict the functional AHI from functional bio-signal features and non-functional clinical characteristics
- Facilitate automated diagnosis and telemedicine of OSA

Privacy?

Efficiency?

Limitations of Existing Work

- Functional Regression
 - Scalar-on-function (Müller & Yao, 2008; Wang et al., 2017)
 - Function-on-scalar (Zhang et al., 2022)
 - Function-on-function
 - No variable selection (Chiou et al., 2016; Iwaizumi and Kato, 2018)
 - Computationally expensive (Ivanescu et al., 2015; Sun et al., 2018; Luo and Qi, 2017)
 - Not privacy-preserving
- Federated Learning (FL)
 - Privacy-preserving
 - Not for function-on-function regression



Proposed: Federated Learning of Functional Regression

- Develop a novel Federated Learning (FL) algorithm for function-on-function regression with variable selection, coupled with an efficient optimization algorithm featuring two key innovations:
 - Gradient Boosting (GB) is leveraged for model estimation with variable selection, known to be computationally-efficient.
 - Least Squares Approximation (LSA) is deployed for FL, proven to be both communicationally- & statistically-efficient.
- Apply the proposed method to predict disease severity from functional and non-functional data, aiming to facilitate automated diagnosis and telemedicine for OSA.

Mathematical Formulation

Notations

- $y_n(t)$: Functional response for subject n
- $x_n = \{x_{n1}(t), \dots, x_{np}(t), \dots, x_{nP}(t)\}^T$: Functional or non-functional predictors for subject *n*
- $\beta_p(s, t)$: Bivariate coefficient function for predictor p
- N: Number of subjects; P: Number of predictors; T: Sampling period, i.e., $t \in T$

Assumption

• Double expansion of $\beta_p(s, t)$ on basis systems $\theta \& \eta$ with K_1 and K_2 functions:

$$\beta_p(s,t) = \boldsymbol{\theta}(s)^T \mathbf{B}_p \boldsymbol{\eta}(t) \qquad \mathbf{B}_p \in \boldsymbol{R}^{K_1 \times K}$$

• Function-on-function regression for subject *n*:

$$y_n(t) = \sum_{p=1}^{P} \int_{s \in T} x_{np}(s) \beta_p(s, t) ds + \varepsilon_n(t)$$

= $\sum_{p=1}^{P} \boxed{h_p(t)} + \varepsilon(t)$
Base learner: $h_p(t) = \mathbf{z}_{np} \mathbf{B}_p \boldsymbol{\eta}(t)$ where $\mathbf{z}_{np} = \int_{s \in T} x_{np}(s) \boldsymbol{\theta}(s)^T ds$

Gradient Boosting (GB) for Function-on-function Regression

• GB aims to solve the following optimization:

$$f^* = \operatorname{argmin}_f \sum_{n=1}^N \int_{t \in T} (y_n(t) - f(t, \mathbf{z}_n))^2 dt$$

- In the ω-th iteration:
 - Computes the negative gradient of the loss function with respect to f, i.e., $u^{(\omega)} \in \mathbb{R}^{N \times 1} = -\frac{\partial l}{\partial f}\Big|_{f=f^{[\omega-1]}}$
 - Fit each base learner $h_p(t) = \mathbf{z}_{np} \mathbf{B}_p \boldsymbol{\eta}(t)$ for p = 1, ..., P to the negative gradient $\boldsymbol{u}^{(\omega)}$ $\widehat{\mathbf{B}}_p^{(\omega)} = \underset{\mathbf{B}_p}{\operatorname{argmin}} \sum_{n=1}^N \int_{t \in T} \left(u_n^{(\omega)}(t) - \mathbf{z}_{np} \mathbf{B}_p \boldsymbol{\eta}(t) \right)^2 dt$
 - Update the model using the **best learner** with the minimal residual $h_{p^*}^{(\omega)} = \mathbf{z}_{np} \widehat{\mathbf{B}}_{p^*}^{(\omega)} \boldsymbol{\eta}(t)$ $f^{(\omega)}(t) = f^{(\omega-1)}(t) + \nu h_{n^*}^{(\omega)}$

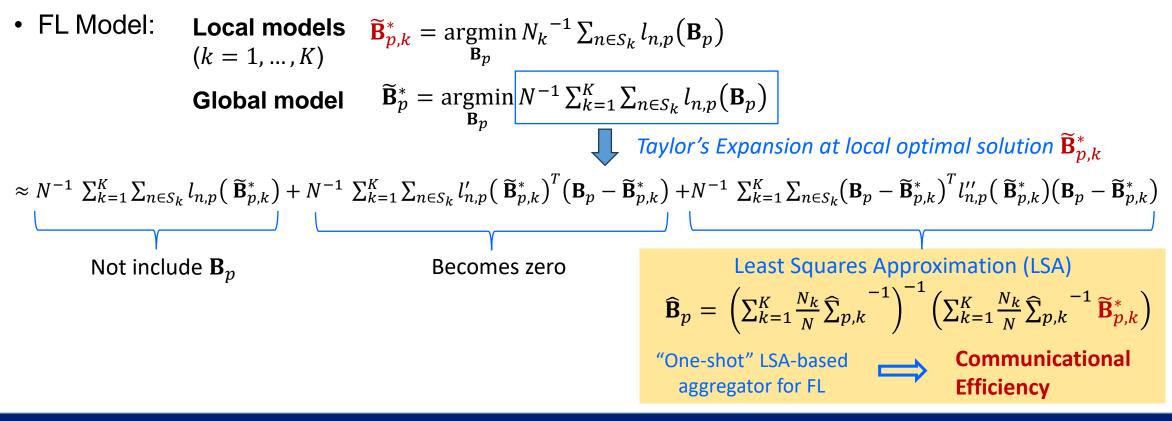
Proposition 1: Assume $\mathbf{Z} \in \mathbf{R}^{N \times K_1}$, $\mathbf{B} \in \mathbf{R}^{K_1 \times K_2}$, two functional vectors $\mathbf{u}(t)$ and $\boldsymbol{\eta}(t)$ where $\mathbf{u}(t) = (u_1(t), \dots, u_N(t))^T$ and $\boldsymbol{\eta}(t) = (\eta_1(t), \dots, \eta_N(t))^T$, and $J_{\eta\eta} = \int_{t \in T} \boldsymbol{\eta}(t) \boldsymbol{\eta}^T(t) dt$. For the optimization problem $\mathbf{B}^* = \underset{\mathbf{B}}{\operatorname{argmin}} \int_{t \in T} \|\mathbf{u}(t) - \mathbf{ZB}\mathbf{\eta}(t)\|^2 dt$,

the optimal solution is

$$vec(\mathbf{B}^*) = (J_{\eta\eta} \otimes (\mathbf{Z}^T \mathbf{Z}))^{-1} vec(\mathbf{Z}^T \int_t \mathbf{u}(t) \boldsymbol{\eta}^T(t) dt).$$

In each GB iteration, the optimization problems can be solved analytically. Efficiency

- Notations:
 - *K*: Number of local servers; *N*: Number of subjects; N_k : Number of subjects in Server *k*
 - S_k contains subjects in Server k for k = 1, ..., K; $S = \{1, ..., N\} = U_{k=1}^K S_k$

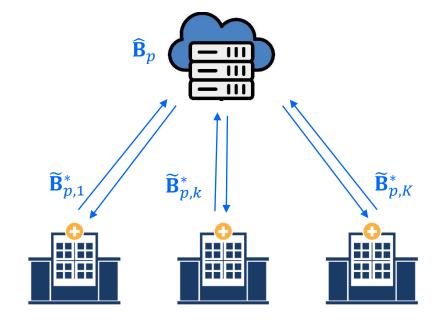


Theorem 1 (Global asymptotic normality): We denote the covariance of the local estimator $\widetilde{\mathbf{B}}_{p,k}^*$ as $\Sigma_{p,k}$, i.e., $\Sigma_{p,k} = Cov(vec(\widetilde{\mathbf{B}}_{p,k}^*))$ and let $\Sigma_p = \left(\sum_{k=1}^{K} \frac{N_k}{N} \Sigma_{p,k}^{-1}\right)^{-1}$. Assuming certain regularity conditions, we have $\sqrt{N}\left(vec(\widehat{\mathbf{B}}_p) - vec(\widetilde{\mathbf{B}}_p^*)\right) \rightarrow_d N(0, \Sigma_p)$.

The proposed LSA estimator \widehat{B}_p achieves the same asymptotic normality as the global estimator \widetilde{B}_p^* . Statistical Efficiency

Theorem 1 (Global asymptotic normality): We denote the asymptotic covariance matrix of the global estimator $\widetilde{\mathbf{B}}_p^*$ as Σ_p , i.e., $\Sigma_p = Ncov(vec(\widetilde{\mathbf{B}}_p^*))$. Given certain statistical regularity conditions and $K \ll \sqrt{N}$, we have $\sqrt{N}(vec(\widehat{\mathbf{B}}_p) - vec(\mathbf{B}_{p,0})) \rightarrow_d N(0, \Sigma_p)$, which indicates that the proposed LSA estimator $\widehat{\mathbf{B}}_p$ achieves the same asymptotic normality as the global estimator $\widetilde{\mathbf{B}}_p^*$.

The proposed LSA estimator \widehat{B}_p achieves the same asymptotic normality as the global estimator \widetilde{B}_p^* . Statistical Efficiency



Iterate Until Convergence

Local Servers:

- Update local models (**Proposition 1**)
 - Closed-form GB estimators $\widetilde{\mathbf{B}}_{p,1}^*$, ..., $\widetilde{\mathbf{B}}_{p,K}^*$
 - Computational efficiency
- Send local parameters to the central server

Central Server:

- Global aggregation (Theorem 1)
 - LSA-based global aggregator $\widehat{\mathbf{B}}_p$
 - Global asymptotic normality: Statistical efficiency
 - One-shot: Communicational efficiency
- Send back parameter updates to local servers

Simulation Study - Setup

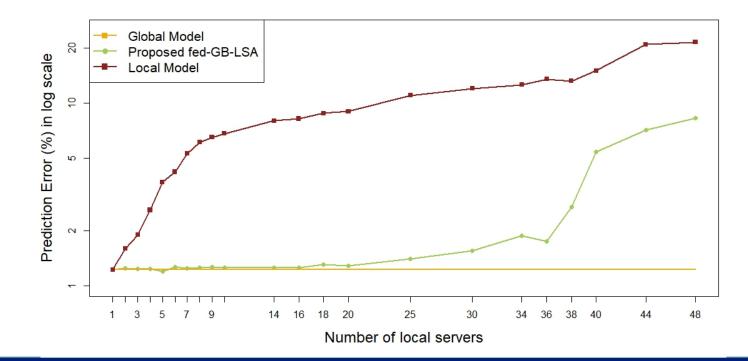
- Sample size: N = 1,000
- Number of predictors: P = 20 (5 effective & 15 dummy)
- Coefficient function: $\beta_p(s,t) = \boldsymbol{\varphi}(s)^T \mathbf{B}_p \boldsymbol{\varphi}(t)$
 - \mathbf{B}_p is sampled from N(1, 0.5) for effective predictor p.
 - \mathbf{B}_p is set to be 0's for dummy predictor p.
- Functional predictors & response:
 - $x_{np}(t) = \sum_{k} c_{pk} \varphi_k(t)$ $c_{pk} \sim U(-1, 1) + e^{N(0.1 \times p, 1)}$
 - $y_n(t_i) = \sum_{p=1}^{P} \sum_{i'} x_{np}(s_{i'}) \beta_p(s_{i'}, t_i) + \sum_k e_{pk} \varphi_k(t_i) e_{pk} \sim N(0, 1)$

Simulation Study - Performance of the proposed fed-GB-LSA

• Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{100\%}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} \left| \frac{Y_{nt} - F_{nt}}{Y_{nt}} \right|$$

• We distribute the data (N = 1,000) across different numbers of servers.



Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

- fed-GB-LSA: $\widehat{\mathbf{B}}_{p} = \left(\sum_{k=1}^{K} \frac{N_{k}}{N} \widehat{\Sigma}_{p,k}^{-1}\right)^{-1} \left(\sum_{k=1}^{K} \frac{N_{k}}{N} \widehat{\Sigma}_{p,k}^{-1} \widetilde{\mathbf{B}}_{p,k}^{*}\right)$
- fed-GB-Average: $\widehat{\mathbf{B}}_p = \sum_{k=1}^{K} \frac{N_k}{N} \widetilde{\mathbf{B}}_{p,k}^*$
- We increase # of servers (100 samples per server).

	МАРЕ						Selection Accuracy				Computational	
	Mean		Standard Deviation		Worst Case		Sensitivity		Specificity		Runtime (min)	
	LSA	Avg	LSA	Avg	LSA	Avg	LSA	Avg	LSA	Avg	LSA	Avg
K=2	2.59	2.87	0.40	0.32	3.78	3.59	0.85	0.69	0.77	0.81	1.7	2.4
К=4	2.25	2.82	0.49	0.22	3.47	3.38	0.85	0.63	0.86	0.83	3.6	5.1
K=6	2.13	2.76	0.44	0.19	3.17	3.22	0.89	0.65	0.85	0.83	5.9	8.6
K=8	1.90	2.81	0.44	0.17	3.08	3.33	0.90	0.77	0.85	0.82	8.5	12.3
K=10	1.90	2.77	0.41	0.15	3.22	3.06	0.93	0.77	0.85	0.82	10.9	16.8

Table 2. Comparison of fed-GB-LSA and fed-GB-Average

Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

• fed-GB-LSA:
$$\widehat{\mathbf{B}}_{p} = \left(\sum_{k=1}^{K} \frac{N_{k}}{N} \widehat{\Sigma}_{p,k}^{-1}\right)^{-1} \left(\sum_{k=1}^{K} \frac{N_{k}}{N} \widehat{\Sigma}_{p,k}^{-1} \widetilde{\mathbf{B}}_{p,k}^{*}\right)$$

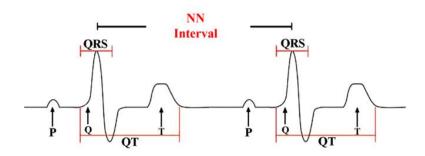
- fed-GB-Average: $\widehat{\mathbf{B}}_p = \sum_{k=1}^{K} \frac{N_k}{N} \widetilde{\mathbf{B}}_{p,k}^*$
- We increase # of servers (100 samples per server).

	Predic	tion Accuracy		Selection	Computational				
		ΜΑΡΕ	Ser	nsitivity	Spe	cificity	Runtime (min)		
	LSA	Avg	LSA	Avg	LSA	Avg	LSA	Avg	
K=2	2.59	2.87	0.85	0.69	0.77	0.81	1.7	2.4	
K=4	2.25	2.82	0.85	0.63	0.86	0.83	3.6	5.1	
K=6	2.13	2.76	0.89	0.65	0.85	0.83	5.9	8.6	
K=8	1.90	2.81	0.90	0.77	0.85	0.82	8.5	12.3	
K=10	1.90	2.77	0.93	0.77	0.85	0.82	10.9	16.8	

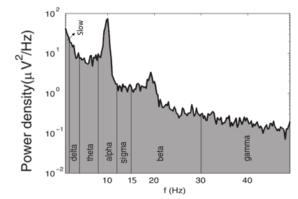
Table 2. Comparison of fed-GB-LSA and fed-GB-Average

Application for OSA telemedicine and diagnosis

- Data description
 - This dataset includes 408 subjects from the Sleep Heart Health Study (SHHS).
- Non-functional features
 - Age (year), gender (female or male), BMI (kg/m2), and ethnicity (Hispanic or not).
- Functional features
 - Bio-signal features extracted from the overnight sleep study
 - Each epoch includes 13 ECG-derived features 28 EEG-derived features.



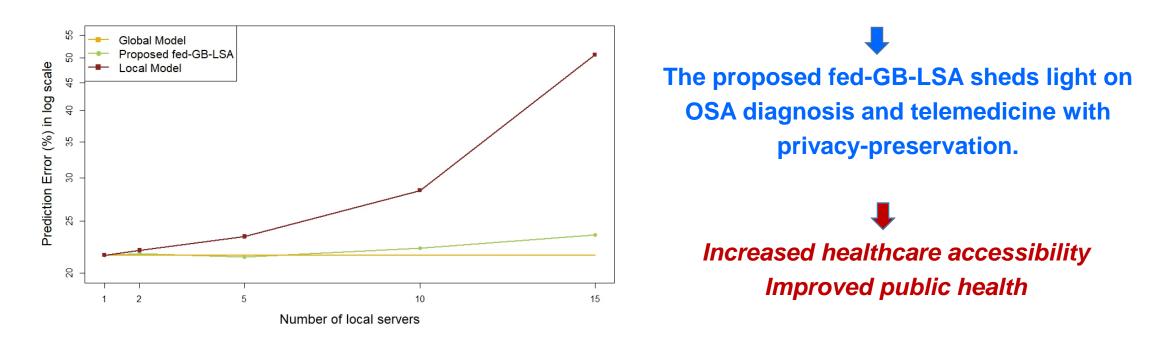
Heart Rate Variability (HRV) analysis for ECG signals



Power Spectral Density (PSD) analysis for EEG signals

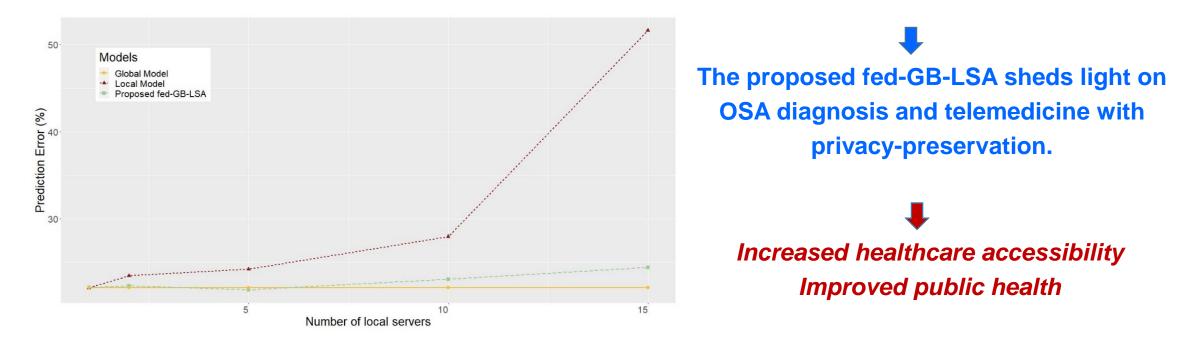
Results

- Global function-on-function regression model:
 - 21.6% MAPE with 10-fold Cross Validation
- To mimic the FL setting, the dataset is randomly partitioned into several "local servers":



Results

- Global function-on-function regression model:
 - 21.6% MAPE with 10-fold Cross Validation
- To mimic the FL setting, the dataset is randomly partitioned into several "local servers":



Conclusion

- Developed a novel Federated Learning (FL) algorithm for function-on-function regression with variable selection.
- Proposed the first-of-its-kind federated Gradient Boosting algorithm with the Least Squares Approximation (fed-GB-LSA) for efficient FL.
 - Computationally, communicationally, and statistically efficient
- Applied the proposed method to predict disease severity from functional and nonfunctional data, aiming to facilitate automated diagnosis and telemedicine for OSA.
- Federated functional regression with heterogeneity among local servers awaits explorations.

Conclusion and Future Work

- Developed a novel Federated Learning (FL) algorithm for function-on-function regression with variable selection.
- Proposed the first-of-its-kind federated Gradient Boosting algorithm with the Least Squares Approximation (fed-GB-LSA) for efficient FL.
 - Computationally, communicationally, and statistically efficient
- Applied the proposed method to predict disease severity from functional and nonfunctional data, aiming to facilitate automated diagnosis and telemedicine for OSA.
- In the future, we plan to generalize the current framework to explore federated function regression under heterogeneous settings to tackle this common challenge in FL.

Thank you!

National Heart, Lung, and Blood Institute

