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Obstructive Sleep Apnea (OSA) 

• Sleep-related breathing disorder

• Associated with neurocognitive and 
cardiovascular diseases

3Dangers of Untreated Sleep Apnea: Memory, Cardiac, Diabetes, Quality of Life, Sleepiness, Depression, Automobile Accidents, and Death

Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine. 2019 Aug 1;7(8):687-98.

• OSA affects almost 1 billion people but is 
underdiagnosed in the population. 



OSA Telemedicine
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Wearable devices:
• Make at-home sleep study feasible 
• Offer opportunities for cost-effective 

telemedicine of OSA

Current diagnostic approach: 
• Manually scored by certified technicians
• Apnea-Hypopnea Index (AHI): frequency 

of adverse respiratory events 
• Labor-intensive & subjective

Research Problem: 
• Predict the functional AHI from functional bio-signal features and non-functional clinical characteristics 
• Facilitate automated diagnosis and telemedicine of OSA

Privacy?                            Efficiency? 



Limitations of Existing Work

• Functional Regression

▪ Scalar-on-function (Müller & Yao, 2008; Wang et al., 2017)

▪ Function-on-scalar (Zhang et al., 2022) 

▪ Function-on-function

• No variable selection (Chiou et al., 2016; Iwaizumi and Kato, 2018)

• Computationally expensive (Ivanescu et al., 2015; Sun et al., 2018; Luo and Qi, 2017)

• Not privacy-preserving
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• Federated Learning (FL)

▪ Privacy-preserving 

▪ Not for function-on-function regression



Proposed: Federated Learning of Functional Regression

• Develop a novel Federated Learning (FL) algorithm for function-on-function regression 

with variable selection, coupled with an efficient optimization algorithm featuring two key 

innovations:  

▪ Gradient Boosting (GB) is leveraged for model estimation with variable selection, 

known to be computationally-efficient.

▪ Least Squares Approximation (LSA) is deployed for FL, proven to be both 

communicationally- & statistically-efficient. 

• Apply the proposed method to predict disease severity from functional and non-functional 

data, aiming to facilitate automated diagnosis and telemedicine for OSA.
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Mathematical Formulation

• Notations
▪ 𝑦𝑛(𝑡) : Functional response for subject 𝑛

▪ 𝒙𝑛 = 𝑥𝑛1(𝑡), ⋯ , 𝑥𝑛𝑝(𝑡), ⋯ , 𝑥𝑛𝑃(𝑡)
𝑇
: Functional or non-functional predictors for subject 𝑛

▪ 𝛽𝑝 𝑠, 𝑡 : Bivariate coefficient function for predictor 𝑝

▪ 𝑁: Number of subjects; 𝑃: Number of predictors; 𝑇: Sampling period, i.e.,  𝑡 ∈ 𝑇

• Assumption
▪ Double expansion of 𝛽𝑝 𝑠, 𝑡  on basis systems 𝜽 & 𝜼 with 𝐾1 and 𝐾2 functions:

𝛽𝑝 𝑠, 𝑡 = 𝜽 𝑠 𝑇𝐁𝑝𝜼 𝑡

▪ Function-on-function regression for subject 𝑛: 

        𝑦𝑛 𝑡 = σ𝑝=1
𝑃 𝑠∈𝑇׬

𝑥𝑛𝑝 𝑠 𝛽𝑝 𝑠, 𝑡 𝑑𝑠 + 𝜀𝑛 𝑡

   = σ𝑝=1
𝑃 ℎ𝑝(𝑡) + 𝜀 𝑡  
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Base learner: ℎ𝑝 𝑡 = 𝒛𝑛𝑝𝐁𝑝𝜼 𝑡  where 𝒛𝑛𝑝 = 𝑠∈𝑇׬
𝑥𝑛𝑝 𝑠 𝜽 𝑠 𝑇𝑑𝑠 

𝐁𝑝 ∈ 𝑹𝐾1×𝐾2



Gradient Boosting (GB) for Function-on-function Regression

• GB aims to solve the following optimization:

   𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 σ𝑛=1
𝑁 𝑡∈𝑇׬

𝑦𝑛 𝑡 − 𝑓 𝑡, 𝒛𝑛  2𝑑𝑡        

•  In the ω-th iteration: 

▪ Computes the negative gradient of the loss function with respect to 𝑓, i.e., 𝒖 ω ∈ 𝑅𝑁×1 = − ฬ
𝜕𝑙

𝜕𝑓 𝑓 =𝑓 ω−1  

▪ Fit each base learner ℎ𝑝 𝑡 = 𝒛𝑛𝑝𝐁𝑝𝜼 𝑡  for 𝑝 = 1, … , 𝑃 to the negative gradient 𝒖 ω

                                    ෡𝐁𝑝
ω

= argmin
𝐁𝑝

σ𝑛=1
𝑁 𝑡∈𝑇׬

𝑢𝑛
ω

𝑡 − 𝒛𝑛𝑝𝐁𝑝𝜼 𝑡
2

𝑑𝑡 

▪ Update the model using the best learner with the minimal residual ℎ𝑝∗
ω

= 𝒛𝑛𝑝
෡𝐁𝑝∗

ω
𝜼 𝑡

𝑓 ω 𝑡  =  𝑓 ω−1 𝑡  + 𝜈ℎ𝑝∗
ω
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Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)
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Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)

Proposition 1: Assume 𝐙 ∈ 𝑹𝑁×𝐾1, 𝐁 ∈ 𝑹𝐾1×𝐾2, two functional vectors 𝒖 𝑡  and 𝜼 𝑡  where 𝒖 𝑡 =

𝑢1 𝑡 , ⋯ , 𝑢𝑁 𝑡
𝑇
and 𝜼 𝑡 = 𝜂1 𝑡 , ⋯ , 𝜂𝑁 𝑡

𝑇
, and 𝐽𝜂𝜂  = 𝑡∈𝑇׬

𝜼 𝑡 𝜼𝑇 𝑡 d𝑡. For the optimization problem

                                             𝐁∗  =  argmin
𝐁

t∈T׬
𝐮 t − 𝐙𝐁𝛈 t 2dt,  

the optimal solution is 

                                  𝑣𝑒𝑐 𝐁∗ = 𝐽𝜂𝜂 ⊗ 𝐙𝑇𝐙
−1

𝑣𝑒𝑐 𝐙𝑇 𝑡׬
𝒖 𝑡 𝜼𝑇 𝑡 𝑑𝑡 . 

In each GB iteration, the optimization problems can be solved analytically. Computational 
Efficiency



“One-shot” LSA-based 
aggregator for FL

෡𝐁𝑝 = σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 −1

σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 ෩𝐁𝑝,𝑘
∗   

Communicational
Efficiency

• Notations:

▪ 𝐾: Number of local servers; 𝑁: Number of subjects; 𝑁𝑘  : Number of subjects in Server 𝑘

▪ 𝑆𝑘 contains subjects in Server 𝑘 for 𝑘 = 1, … , 𝐾; 𝑆 = 1, … , 𝑁 =  U𝑘=1
𝐾 𝑆𝑘  

• FL Model: 
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Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)

≈ 𝑁−1  σ𝑘=1
𝐾 σ𝑛∈𝑆𝑘

𝑙𝑛,𝑝  ෩𝐁𝑝,𝑘
∗ + 𝑁−1  σ𝑘=1

𝐾 σ𝑛∈𝑆𝑘
𝑙𝑛,𝑝

′  ෩𝐁𝑝,𝑘
∗ 𝑇

𝐁𝑝 − ෩𝐁𝑝,𝑘
∗  +𝑁−1  σ𝑘=1

𝐾 σ𝑛∈𝑆𝑘
𝐁𝑝 − ෩𝐁𝑝,𝑘

∗ 𝑇
𝑙𝑛,𝑝

′′  ෩𝐁𝑝,𝑘
∗ 𝐁𝑝 − ෩𝐁𝑝,𝑘

∗  

Not include 𝐁𝑝 Becomes zero Least Squares Approximation (LSA)

Local models 

(𝑘 = 1, … , 𝐾) 

Global model

Taylor’s Expansion at local optimal solution ෩𝐁𝑝,𝑘
∗  

෩𝐁𝑝,𝑘
∗ = argmin

𝐁𝑝

𝑁𝑘
−1 σ𝑛∈𝑆𝑘

𝑙𝑛,𝑝 𝐁𝑝  

෩𝐁𝑝
∗ = argmin

𝐁𝑝

𝑁−1 σ𝑘=1
𝐾 σ𝑛∈𝑆𝑘

𝑙𝑛,𝑝 𝐁𝑝    
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Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)

The proposed LSA estimator ෡𝐁𝑝 achieves the same asymptotic normality 

as the global estimator ෩𝐁𝑝
∗ . 

Statistical 
Efficiency

Theorem 1 (Global asymptotic normality): We denote the covariance of the local 

estimator ෩𝐁𝑝,𝑘
∗  as 𝚺𝑝,𝑘, i.e., 𝚺𝑝,𝑘 = 𝐶𝑜𝑣(𝑣𝑒𝑐(෩𝐁𝑝,𝑘

∗ )) and let 𝚺𝑝 = σ𝑘=1
𝐾 𝑁𝑘

𝑁
Σ𝑝,𝑘

−1
−1

. Assuming 

certain regularity conditions, we have 𝑁 𝑣𝑒𝑐(෡𝐁𝑝) − 𝑣𝑒𝑐(෩𝐁𝑝
∗ ) →𝑑 𝑁(0, 𝚺𝑝). 
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The proposed LSA estimator ෡𝐁𝑝 achieves the same asymptotic normality 

as the global estimator ෩𝐁𝑝
∗ . 

Statistical 
Efficiency

Theorem 1 (Global asymptotic normality): We denote the asymptotic covariance matrix of 

the global estimator ෩𝐁𝑝
∗  as 𝚺𝑝, i.e., 𝚺𝑝 = 𝑁𝑐𝑜𝑣(𝑣𝑒𝑐(෩𝐁𝑝

∗ )). Given certain statistical regularity 

conditions and 𝐾 ≪ 𝑁, we have 𝑁 𝑣𝑒𝑐(෡𝐁𝑝) − 𝑣𝑒𝑐(𝐁𝑝,0) →𝑑 𝑁(0, 𝚺𝑝), which indicates that 

the proposed LSA estimator ෡𝐁𝑝  achieves the same asymptotic normality as the global 

estimator ෩𝐁𝑝
∗ .



Methodological Contribution: federated Gradient Boosting 
algorithm with the Least Squares Approximation (fed-GB-LSA)
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Iterate Until Convergence

     Local Servers: 

o Update local models (Proposition 1)

o Closed-form GB estimators ෩𝐁𝑝,1
∗ , …, ෩𝐁𝑝,𝐾

∗

o Computational efficiency

o Send local parameters to the central server

     Central Server: 

o Global aggregation (Theorem 1)

o LSA-based global aggregator ෡𝐁𝑝

o Global asymptotic normality: Statistical efficiency

o One-shot: Communicational efficiency

o Send back parameter updates to local servers

෡𝐁𝑝

෩𝐁𝑝,1
∗ ෩𝐁𝑝,𝑘

∗ ෩𝐁𝑝,𝐾
∗



Simulation Study - Setup

• Sample size: N = 1,000

• Number of predictors: P = 20 (5 effective & 15 dummy)

• Coefficient function: 𝛽𝑝 𝑠, 𝑡  = 𝝋 𝑠 𝑇𝐁𝑝𝝋 𝑡

▪ 𝐁𝑝 is sampled from 𝑁 1, 0.5  for effective predictor 𝑝.

▪ 𝐁𝑝 is set to be 0’s for dummy predictor 𝑝. 

• Functional predictors & response:

▪ 𝑥𝑛𝑝 𝑡 = σ𝑘 𝑐𝑝𝑘𝜑𝑘 𝑡      𝑐𝑝𝑘  ~ 𝑈 −1, 1 + 𝑒𝑁(0.1×𝑝, 1)

▪ 𝑦𝑛 𝑡𝑖 = σ𝑝=1
𝑃 σ𝑖′ 𝑥𝑛𝑝 𝑠𝑖′ 𝛽𝑝 𝑠𝑖′ , 𝑡𝑖 + σ𝑘 𝑒𝑝𝑘𝜑𝑘 𝑡𝑖   𝑒𝑝𝑘 ~ 𝑁(0, 1)
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Simulation Study - Performance of the proposed fed-GB-LSA

• Mean Absolute Percentage Error (MAPE): 

   𝑀𝐴𝑃𝐸 =
100%

𝑁𝑇
σ𝑛=1

𝑁 σ𝑡=1
𝑇 𝑌𝑛𝑡−𝐹𝑛𝑡

𝑌𝑛𝑡
 

• We distribute the data (N = 1,000) across different numbers of servers.
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Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

• fed-GB-LSA:         ෡𝐁𝑝 = σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 −1

σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 ෩𝐁𝑝,𝑘
∗  

• fed-GB-Average:  ෡𝐁𝑝 =  σ𝑘=1
𝐾 𝑁𝑘

𝑁
෩𝐁𝑝,𝑘

∗

• We increase # of servers (100 samples per server).
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Table 2. Comparison of fed-GB-LSA and fed-GB-Average

MAPE Selection Accuracy Computational 

Runtime (min)Mean Standard Deviation Worst Case Sensitivity Specificity

LSA Avg LSA Avg LSA Avg LSA Avg LSA Avg LSA Avg

K=2 2.59 2.87 0.40 0.32 3.78 3.59 0.85 0.69 0.77 0.81 1.7 2.4

K=4 2.25 2.82 0.49 0.22 3.47 3.38 0.85 0.63 0.86 0.83 3.6 5.1

K=6 2.13 2.76 0.44 0.19 3.17 3.22 0.89 0.65 0.85 0.83 5.9 8.6

K=8 1.90 2.81 0.44 0.17 3.08 3.33 0.90 0.77 0.85 0.82 8.5 12.3

K=10 1.90 2.77 0.41 0.15 3.22 3.06 0.93 0.77 0.85 0.82 10.9 16.8



Simulation Study - Compare fed-GB-LSA vs fed-GB-Average

• fed-GB-LSA:         ෡𝐁𝑝 = σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 −1

σ𝑘=1
𝐾 𝑁𝑘

𝑁
෡σ𝑝,𝑘

−1 ෩𝐁𝑝,𝑘
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• fed-GB-Average:  ෡𝐁𝑝 =  σ𝑘=1
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∗

• We increase # of servers (100 samples per server).
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LSA Avg LSA Avg LSA Avg LSA Avg

K=2 2.59 2.87 0.85 0.69 0.77 0.81 1.7 2.4
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K=6 2.13 2.76 0.89 0.65 0.85 0.83 5.9 8.6

K=8 1.90 2.81 0.90 0.77 0.85 0.82 8.5 12.3
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Application for OSA telemedicine and diagnosis

• Data description

▪ This dataset includes 408 subjects from the Sleep Heart Health Study (SHHS). 

• Non-functional features

▪ Age (year), gender (female or male), BMI (kg/m2), and ethnicity (Hispanic or not).

• Functional features

▪ Bio-signal features extracted from the overnight sleep study

▪ Each epoch includes 13 ECG-derived features 28 EEG-derived features.  
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Heart Rate Variability (HRV) analysis for ECG signals Power Spectral Density (PSD) analysis for EEG signals



Results

• Global function-on-function regression model: 

▪  21.6% MAPE with 10-fold Cross Validation 

• To mimic the FL setting, the dataset is randomly partitioned into several “local servers”: 

19

The proposed fed-GB-LSA sheds light on 

OSA diagnosis and telemedicine with 

privacy-preservation.

Increased healthcare accessibility 

Improved public health
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Conclusion 

• Developed a novel Federated Learning (FL) algorithm for function-on-function regression 

with variable selection. 

• Proposed the first-of-its-kind federated Gradient Boosting algorithm with the Least 

Squares Approximation (fed-GB-LSA) for efficient FL. 

▪ Computationally, communicationally, and statistically efficient

• Applied the proposed method to predict disease severity from functional and non-

functional data, aiming to facilitate automated diagnosis and telemedicine for OSA.

• Federated functional regression with heterogeneity among local servers awaits 

explorations.
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Conclusion and Future Work

• Developed a novel Federated Learning (FL) algorithm for function-on-function regression 

with variable selection. 

• Proposed the first-of-its-kind federated Gradient Boosting algorithm with the Least 

Squares Approximation (fed-GB-LSA) for efficient FL. 

▪ Computationally, communicationally, and statistically efficient

• Applied the proposed method to predict disease severity from functional and non-

functional data, aiming to facilitate automated diagnosis and telemedicine for OSA.

• In the future, we plan to generalize the current framework to explore federated function 

regression under heterogeneous settings to tackle this common challenge in FL. 
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Q&A

Thank you!
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