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•Immunotherapy has shown major success in cancers such as melanoma and 

lung cancer, but most colorectal cancers (CRC) do not respond effectively.

•Tertiary lymphoid structures (TLSs) are organized clusters of immune cells 

that form within tumors and can enhance local antitumor immunity.

•The maturation process and microenvironmental organization of TLSs in 

colorectal cancer remain poorly understood.

•Hypothesis: TLS maturation involves coordinated structural and gene 

expression remodeling, which differs between immunotherapy-responsive, 

colorectal-like responsive (CLR), and non-responsive, diffuse immune-inactive 

(DII), colorectal cancers.

Introduction and Aim

Data & Methods

Results (Cont. )

Conclusion
• TLS maturation in colorectal cancer involves coordinated stromal, 

vascular, and immune remodeling.
• Mature CLR TLSs form structured immune niches with 

αSMA⁺/Collagen IV⁺ capsules, boundary-restricted signaling (β-
catenin, EGFR, BCL-2), and vascular exclusion.

• DII TLSs remain diffuse, lacking spatial and transcriptional 
compartmentalization.

• MaxFuse Integrated spatial proteomics and scRNA-seq revealed a 
shift from proliferative (MKI67⁺) nascent TLSs to plasma cell–rich 
(MZB1⁺, XBP1⁺) mature TLSs with enhanced immune effector 
activity.

Discussion
• Further work is needed to validate marker–cell type specificity and 

replicate findings in independent datasets.
• Future studies should integrate matched genomic and proteomic 

data from the same patients for deeper mechanistic insight.

Conclusions & Discussion

Results

Figure 16. Gene 

expression patterns 

across TLS maturation 

in CRC

Heatmap showing key 

genes across TLSs from 

CLR (teal) and DII (red) 

patients. CLR TLSs 

display strong induction of 

B-cell differentiation 

(MZB1, XBP1, 

IGHA/IGHG) and immune 

activation (CXCL13, IFNG, 

PDCD1) with maturation, 

whereas DII TLSs show 

weaker, unstructured 

transcriptional programs.

Figure 13. BCL-2 expression.

Mature CLR TLSs show a BCL-2⁺ 
survival rim outside TLS boundaries, 

indicating compartmentalized apoptotic 

regulation, while DII TLSs lack this 

spatial organization.
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Figure 2. Identification and classification of TLS maturation states.

Workflow for TLS detection and classification. TLS regions were identified by screening B-cell density, expanding 

neighbors around B-cell centroids, and segmenting contiguous clusters into TLS regions. Extracted TLSs were 

further characterized by cell density, aggregation, composition, and interactome features. Representative TLSs 

across TMA cohorts A and B illustrate classification into nascent (blue), intermediate (green), and mature (red) 

maturation states. Cell composition derived by the classification algorithm provides reference distributions of 

immune subsets across TLS subtypes.

Figure 1. Multi-omics datasets for TLS analysis in colorectal 

cancer.

Spatial proteomics data and single-cell RNA sequencing data were 

integrated to map structural and transcriptional features of tertiary 

lymphoid structure maturation.

Figure 15. Cellular composition and spatial remodeling across TLS maturation.

Gradient plots (left) show spatial distributions of stroma, vasculature, and macrophages 

relative to the TLS boundary in CLR and DII patients, with lines indicating TLS stages—

nascent (blue), intermediate (green), and mature (red). CLR TLSs show organized 

boundary enrichment of stromal and macrophage populations, whereas DII TLSs remain 

diffuse. Stacked barplots (right) display overall cell-type composition changes across 

maturation, revealing decreased B and CD4⁺ T cells and increased plasma cells, 

macrophages, and stroma with TLS progression.

Figure 3. Multi-omics datasets for 

TLS analysis in colorectal cancer.

Spatial proteomics data and single-cell 

RNA sequencing data were integrated to 

map structural and transcriptional 

features of tertiary lymphoid structure 

maturation.

Figure 4. Multi-omics datasets for 

TLS analysis in colorectal cancer.

Spatial proteomics data and single-cell 

RNA sequencing data were integrated 

to map structural and transcriptional 

features of tertiary lymphoid structure 

maturation.

Figure 5: TLS number and area

Quantification of TLS number and area 

per maturation stage demonstrates 

progressive expansion and 

consolidation of TLS structures.

Figure 9. GFAP expression.

CLR TLSs show strong GFAP enrichment 

inside mature TLSs, indicating localized 

stromal activation, whereas DII TLSs display 

diffuse, unpatterned GFAP expression 

lacking spatial organization.

Figure 14. EGFR expression.

Mature CLR TLSs show a sharp EGFR 

peak at the TLS boundary, indicating 

boundary-restricted signaling, whereas 

DII TLSs display diffuse, low EGFR 

expression without spatial organization.

Figure 11. CD68 expression.

CD68⁺ macrophages are enriched in 

nascent DII TLSs and decline with 

maturation, while CLR TLSs maintain 

uniformly low expression without 

boundary-specific organization.

Figure 10. CD163 expression.

CD163⁺ macrophages are enriched in 

nascent DII TLSs and decline with 

maturation, while CLR TLSs show 

consistently low, diffuse expression 

across stages.

Figure 12. CD34 expression.

CLR TLSs show reduced CD34⁺ vasculature 

inside mature TLSs, indicating vascular 

exclusion, whereas DII TLSs display higher, 

diffuse CD34 expression consistent with 

persistent vascular activity.

Figure 6. β-catenin expression.

CLR TLSs show β-catenin suppression inside 

TLSs and enrichment outside boundaries, 

indicating boundary-specific Wnt signaling, 

whereas DII TLSs lack clear spatial gradients 

and display diffuse β-catenin expression.

Figure 7. Collagen IV expression.

Mature CLR TLSs show structured Collagen 

IV deposition at TLS boundaries, indicating 

extracellular matrix remodeling, while DII TLSs 

display diffuse, unorganized Collagen IV 

expression lacking boundary formation.

Figure 8. αSMA expression.

Mature CLR TLSs show strong αSMA⁺ 
stromal encapsulation around TLS 

boundaries, whereas DII TLSs lack 

structured αSMA organization and 

display diffuse, low expression.
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