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Motivation

Q: What are the characteristics of gene expression data?
▶ High-dimensionality

▶ Sparsity
▶ High-correlation
▶ Group structure
▶ Homogeneity
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Motivation

It is crucial to incorporate the characteristics (structure) of the
gene expression data into the analysis and modeling process.

▶ Structure recovery: a fundamental task in data science.

▶ Q: But how?
▶ A: Penalization — A powerful strategy for dealing with

“structured” data analysis and modeling.
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Penalization methods

▶ Penalization/regularization is achieved through a penalty
function that promotes the desired structure.

▶ Penalized/regularized likelihood models are in general in
the following form:

min
𝛽

ℓ(𝛽) + 𝜆𝜓(𝛽),

where ℓ(𝛽) is the log-likelihood function, 𝜓(𝛽) is the penalty
function, and 𝜆 is the regularization parameter balancing the
trade-off between model fitting and model complexity.
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Penalization methods — Lasso

The Lasso (least absolute shrinkage and selection operator) penalty
(Tibshirani 1996) is defined as

𝜓(𝛽) = ‖𝛽‖1=
𝑝

∑
𝑖

|𝛽𝑖| (1)

▶ 𝐿1 norm as the penalty function
▶ The pioneering work of sparsity learning in statistics and

machine learning.



Penalization methods – Lasso

Consider a linear regression problem

y = X𝛽 + 𝜖

where 𝑦 ∈ ℝ𝑛 is the response vector, 𝑋 ∈ ℝ𝑛×𝑝 is the design
matrix containing 𝑝 covariate variables, and 𝜖 ∈ ℝ𝑛 is the Gaussian
noise with mean 0 and variance 𝜎2.

▶ The maximum likelihood estimator (MLE) of 𝛽 is

𝛽𝑀𝐿𝐸 = min
𝛽

1
2‖𝑦 − 𝑋𝛽‖2

2 (2)
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matrix containing 𝑝 covariate variables, and 𝜖 ∈ ℝ𝑛 is the Gaussian
noise with mean 0 and variance 𝜎2.

▶ The Lasso penalized likelihood model is

𝛽𝐿𝑎𝑠𝑠𝑜 = min
𝛽

1
2‖𝑦 − 𝑋𝛽‖2

2 + 𝜆‖𝛽‖1 (3)



Penalization methods – Lasso
▶ Solution path of Lasso

Figure 1: Figure adopted from (Hastie, Tibshirani, and Wainwright 2015)



Penalization methods – Lasso
▶ Why can Lasso promote sparsity?

Figure 2: Figure adopted from (Hastie, Tibshirani, and Wainwright 2015)



Penalization methods – Lasso
▶ How does Lasso promote sparsity?

Figure 3: Figure adopted from (Hastie, Tibshirani, and Wainwright 2015)



Penalization methods – Lasso

▶ Advantages
▶ Simplicity
▶ Easy to compute

▶ Disadvantages
▶ Underestimate large 𝛽𝑖s, why?
▶ Perform badly with correlated variables



Penalization methods – SCAD

To mitigate the underestimation of Lasso, one influential work by
(Fan and Li 2001) is the smoothly clipped absolute deviations
(SCAD) penalty:

𝜓𝜆(𝛽) =
𝑝

∑
𝑖=1

𝑃(𝛽𝑖; 𝜆, 𝛾)



Penalization methods – SCAD

The SCAD penalty:

𝜓𝜆(𝛽) =
𝑝

∑
𝑖=1

𝑃(𝛽𝑖; 𝜆, 𝛾)

where the univariate SCAD penalty is

𝑃(𝑥; 𝜆, 𝛾) =
⎧{
⎨{⎩

𝜆|𝑥|, if |𝑥| ≤ 𝜆,
2𝛾𝜆|𝑥|−𝑥2−𝜆2

2(𝛾−1) , if 𝜆 < |𝑥| < 𝛾𝜆,
𝜆2(𝛾+1)

2 , if |𝑥| ≥ 𝛾𝜆,
(4)

for some 𝛾 > 2. Often, 𝛾 = 3.7 is used in practice.



Penalization methods – SCAD

Structure of SCAD:
▶ Coincide with Lasso when |𝑥| ≤ 𝜆
▶ Transition to a quadratic function with 𝜆 < |𝑥| < 𝛾𝜆
▶ Remain as a constant for all |𝑥| ≥ 𝛾𝜆



Penalization methods – MCP

A second option to mitigate the underestimation of Lasso is the
minimax concave penalty (MCP, (Zhang et al. 2010)):

𝜓𝜆(𝛽) =
𝑝

∑
𝑖=1

𝑃(𝛽𝑖; 𝜆, 𝛾)

where the univariate MCP is

𝑃(𝑥; 𝜆, 𝛾) = {𝜆|𝑥| − 𝑥2
2𝛾 , if |𝑥| ≤ 𝛾𝜆,

1
2𝛾𝜆2, if |𝑥| > 𝛾𝜆, (5)

for some 𝛾 > 1. Often, 𝛾 = 3 is used in practice.



Penalization methods – MCP

Structure of MCP:
▶ A quadratic function with |𝑥| ≤ 𝛾𝜆
▶ A constant for all |𝑥| > 𝛾𝜆



Penalization methods

Figure 4: Visualization of Lasso, SCAD, and MCP (from Patrick
Breheny’s lecture on BIOS 7240)



Penalization methods

Figure 5: Visualization of derivatives of Lasso, SCAD, and MCP (from
Patrick Breheny’s lecture on BIOS 7240)



Penalization methods – Elastic Net

▶ How to deal with correlated variables?

The elastic net penalty (Zou and Hastie 2005) is defined as

𝑃𝜆(𝛽) = 𝜆(𝛼‖𝛽‖1 + 1 − 𝛼
2 ‖𝛽‖2

2), (6)

which is a combination of the 𝐿1-penalty (Lasso) and the squared
𝐿2-penalty (ridge).



Penalization methods – Elastic Net

Figure 6: An illustrative comparison of Lasso and Elastic Net on
correlated features. Figure adopted from (Hastie, Tibshirani, and
Wainwright 2015)



Penalization methods – Group Lasso

Consider a linear regression problem

y = X𝛽 + 𝜖

▶ Covariate variables in 𝑋 have natural group structures

e.g. categorical variables
▶ Aim: select (or not) a whole group of variables



Penalization methods – Group Lasso

Group Lasso (Yuan and Lin 2006) extends the Lasso penalty to the
group selection (group sparsity) scenario. The group Lasso penalty
is defined as

𝜓(𝛽) =
𝐽

∑
𝑗=1

𝐾𝑗‖𝛽𝑗‖2, (7)

▶ 𝛽 = (𝛽𝑇
1 , ..., 𝛽𝑇

𝐽 )𝑇 ∈ ℝ𝑝 with 𝛽𝑗 ∈ ℝ𝑝𝑗

▶ 𝐾𝑗: adjust for the group sizes, e.g. 𝐾𝑗 = √𝑝𝑗



Penalization methods – Group Lasso

Why group Lasso can promote sparsity at the group level?
▶ It applies Lasso to the 𝐿2 norm of each subvector of each

group

Lasso-type penalization at the group level;

Ridge-type penalization at the individual level.
▶ Want the sparsity at the individual level as well?

It is called bi-level variable selection (See Homework).



Penalization methods – Group SCAD/MCP

▶ Can SCAD and MCP be extended to the group selection
scenario?

Yes!
▶ A more general class of group selection penalties:

𝜓(𝛽) =
𝐽

∑
𝑗=1

𝑃(‖𝛽𝑗‖2; 𝐾𝑗𝜆, 𝛾), (8)

where 𝑃 is the univariate SCAD or MCP penalty.



Penalization methods – Distance penalization

Consider a very general setting

min
𝛽

ℓ(𝛽) subject to 𝛽 ∈ 𝐶, (9)

where ℓ(𝛽) is the negative log-likelihood, and 𝐶 is the constraint
set that specifies the required structure on 𝛽.

▶ Very general in the sense that the structure of 𝛽 is coded as a
constraint on 𝛽.

▶ Sparsity case: 𝐶 = {𝛽 ∶ ‖𝛽‖0≤ 𝑘} with 𝑘 as an positive
integer controlling the sparsity of 𝛽.



Penalization methods – Distance penalization

Distance penalization for constrained estimation

min
𝛽

ℓ(𝛽) + 𝜆
2 dist(𝛽, 𝐶)2. (10)

where 1
2dist(𝛽, 𝐶)2 = min

𝑢∈𝐶
1
2‖𝛽 − 𝑢‖2

2. (11)



Applications in Bioinformatics

Sparse logistic regression in cancer classification
▶ Data: leukemia patient samples

▶ acute lymphoblast leukemia (ALL), 49 samples
▶ acute myeloid leukemia (AML), 23 samples
▶ each sample contains the profile of 7129 genes
▶ available at https://search.r-

project.org/CRAN/refmans/propOverlap/html/leukaemia.html

▶ Aim: leukemia subtype classification & gene selection

https://search.r-project.org/CRAN/refmans/propOverlap/html/leukaemia.html
https://search.r-project.org/CRAN/refmans/propOverlap/html/leukaemia.html


Applications in Bioinformatics

Sparse logistic regression in cancer classification

Consider a general binary classification problem. The data is given
in the format {𝑦𝑖, 𝑥𝑖}𝑛

𝑖=1, where 𝑦𝑖 ∈ {0, 1} indicates the class
label and 𝑥𝑖 ∈ ℝ𝑝 contains the 𝑝 covaraiate variables of the 𝑖-th
sample.

The (linear) logistic regression model assumes the following
conditional probability:

𝑃𝑟(𝑦 = 1|𝑥) = 𝑒𝑥𝑇 𝛽

1 + 𝑒𝑥𝑇 𝛽



Applications in Bioinformatics

Sparse logistic regression in cancer classification

The logistic model is fitted by minimizing the negative binomial
log-likelihood of the data

min
𝛽

− ℓ(𝛽) + 𝜆‖𝛽‖1 (12)

▶ ℓ(𝛽) = ∑𝑛
𝑖=1[𝑦𝑖𝑥𝑇

𝑖 𝛽 − log(1 + 𝑥𝑇
𝑖 𝛽)] is the negative

log-likelihood
▶ ‖𝛽‖1 is the penalty term for sparsity
▶ 𝜆 is the regularization parameter



Applications in Bioinformatics

Penalized likelihood for scRNA-seq data analysis
▶ UMI count data

▶ For gene 𝑔 in cell 𝑐, the UMI count is 𝑥𝑔𝑐

▶ What’s the distribution of 𝑥𝑔𝑐?
▶ Binomial distribution

𝑥𝑔𝑐 ∼ 𝑁𝐵(𝜇𝑔𝑐, 𝜃𝑔), ln 𝜇𝑔𝑐 = 𝛽𝑔0 + ln 𝑛𝑐

where 𝜃𝑔 is the gene-specific dispersion parameter,
𝑛𝑐 = ∑𝑔 𝑥𝑔𝑐 is the total sequencing depth and the variance
of the NB distribution is 𝜇𝑔𝑐 + 𝜇2

𝑔𝑐/𝜃𝑔.



Applications in Bioinformatics

Penalized likelihood for scRNA-seq data analysis
▶ UMI count data

▶ For gene 𝑔 in cell 𝑐, the UMI count is 𝑥𝑔𝑐

▶ What’s the distribution of 𝑥𝑔𝑐?
▶ Zero-inflated mixture distribution

𝑃𝑟(𝑥𝑔𝑐 = 𝑥) = (1 − 𝜋𝑔)𝐼(𝑥 = 0) + 𝜋𝑔𝐼(𝑥 ≠ 0)𝐹(𝑥|𝜇𝑔𝑐, 𝜎2
𝑔)



Applications in Bioinformatics

Penalized likelihood for scRNA-seq data analysis
▶ Penalization in scRNA-seq data analysis?

▶ clustering / cell cell subgroup detection
▶ gene selection
▶ Other tasks



Recap on Penalization

▶ Penalization is a strategy
▶ not just for sparsity; not only for likelihood-based models

▶ A general penalization framework:

min
𝛽

loss(𝛽) + penalty(𝛽) (13)

▶ loss(𝛽) is derivaed from the specific problem
▶ penalty(𝛽) is defined according to the structure of 𝛽

▶ Penalization in other applications:

classification/clustering/PCA/CCA/matrix recovery



Recap on Penalization

Penalization in classification — 𝐿1-regularized SVM

min
𝛽

1
𝑛

𝑛
∑
𝑖=1

[1 − 𝑦𝑖𝑓(𝑥𝑖; 𝛽)]+ + 𝜆‖𝛽‖1 (14)

▶ The first term is known as the hinge loss.
▶ If 𝑓(𝑥𝑖; 𝛽) = 𝑥𝑇

𝑖 𝛽, then it’s a linear SVM.
▶ The second term is the penalty term promoting sparsity in 𝛽.
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