Penalized Likelihood in Bioinformatics

Xiaoqian Liu

About me

- Lecturer for today's class
- Postdoc at Dr. Wenyi Wang's Lab
- Research interests: Statistical/Machine Learning,
 Computational Statistics & Optimization, Bioinformatics & Cancer Biology
- Enthusiastic about teaching and mentoring. Feel free to reach out to me if you have any questions about today's lecture or my research.
- Personal website: https://xiaoqian-liu.github.io/

Outline

- Motivation
- Penalization methods
- Applications in Bioinformatics
- Recap on penalization

Q: What are the characteristics of gene expression data?

► High-dimensionality

- ▶ High-dimensionality
- Sparsity

- High-dimensionality
- Sparsity
- ► High-correlation

- ▶ High-dimensionality
- Sparsity
- ▶ High-correlation
- Group structure

- ▶ High-dimensionality
- Sparsity
- ▶ High-correlation
- Group structure
- Homogeneity

- ► High-dimensionality
- Sparsity
- ► High-correlation
- Group structure
- Homogeneity
-

It is crucial to incorporate the characteristics (structure) of the gene expression data into the analysis and modeling process.

Structure recovery: a fundamental task in data science.

It is crucial to incorporate the characteristics (structure) of the gene expression data into the analysis and modeling process.

- Structure recovery: a fundamental task in data science.
- ▶ Q: But how?

It is crucial to incorporate the characteristics (structure) of the gene expression data into the analysis and modeling process.

- Structure recovery: a fundamental task in data science.
- Q: But how?
- A: Penalization A powerful strategy for dealing with "structured" data analysis and modeling.

- Penalization/regularization is achieved through a penalty function that promotes the desired structure.
- Penalized/regularized likelihood models are in general in the following form:

$$\min_{\beta} \ \ell(\beta) + \lambda \psi(\beta),$$

where $\ell(\beta)$ is the log-likelihood function, $\psi(\beta)$ is the penalty function, and λ is the regularization parameter balancing the trade-off between model fitting and model complexity.

Penalty functions covered in today's lecture:

Lasso

- Lasso
- ► SCAD

- Lasso
- ► SCAD
- **►** MCP

- Lasso
- ► SCAD
- **►** MCP
- Elastic Net

- Lasso
- ► SCAD
- ► MCP
- ► Elastic Net
- ► Group Lasso/SCAD/MCP

- Lasso
- ► SCAD
- ► MCP
- ► Elastic Net
- ► Group Lasso/SCAD/MCP
- Distance penalization

The Lasso (least absolute shrinkage and selection operator) penalty (Tibshirani 1996) is defined as

$$\psi(\beta) = \|\beta\|_1 = \sum_{i=1}^{p} |\beta_i|$$
 (1)

- lackbox L_1 norm as the penalty function
- The pioneering work of sparsity learning in statistics and machine learning.

Consider a linear regression problem

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $y \in \mathbb{R}^n$ is the response vector, $X \in \mathbb{R}^{n \times p}$ is the design matrix containing p covariate variables, and $\epsilon \in \mathbb{R}^n$ is the Gaussian noise with mean 0 and variance σ^2 .

lacktriangle The maximum likelihood estimator (MLE) of eta is

$$\beta_{MLE} = \min_{\beta} \frac{1}{2} \|y - X\beta\|_{2}^{2} \tag{2}$$

Consider a linear regression problem

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $y \in \mathbb{R}^n$ is the response vector, $X \in \mathbb{R}^{n \times p}$ is the design matrix containing p covariate variables, and $\epsilon \in \mathbb{R}^n$ is the Gaussian noise with mean 0 and variance σ^2 .

The Lasso penalized likelihood model is

$$\beta_{Lasso} = \min_{\beta} \frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$
 (3)

► Solution path of Lasso

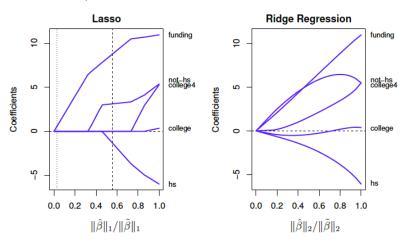


Figure 2.1 Left: Coefficient path for the lasso, plotted versus the ℓ_1 norm of the coefficient vector, relative to the norm of the unrestricted least-squares estimate $\tilde{\beta}$. Right: Same for ridge regression, plotted against the relative ℓ_2 norm.

Figure 1: Figure adopted from (Hastie Tibshirani and Wainwright 2015)

▶ Why can Lasso promote sparsity?

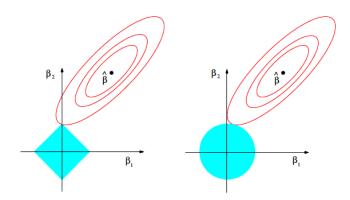


Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions $|\beta_1|+|\beta_2| \le t$ and $\beta_1^2+\beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the residual-sum-of-squares function. The point $\widehat{\beta}$ depicts the usual (unconstrained) least-squares estimate.

Figure 2: Figure adopted from (Hastie, Tibshirani, and Wainwright 2015)

▶ How does Lasso promote sparsity?

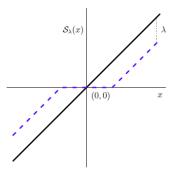


Figure 2.4 Soft thresholding function $S_{\lambda}(x) = \operatorname{sign}(x)(|x| - \lambda)_{+}$ is shown in blue (broken lines), along with the 45° line in black.

Figure 3: Figure adopted from (Hastie, Tibshirani, and Wainwright 2015)

- Advantages
 - Simplicity
 - Easy to compute
- Disadvantages
 - ▶ Underestimate large β_i s, why?
 - Perform badly with correlated variables

Penalization methods - SCAD

To mitigate the underestimation of Lasso, one influential work by (Fan and Li 2001) is the smoothly clipped absolute deviations (SCAD) penalty:

$$\psi_{\lambda}(\beta) = \sum_{i=1}^{p} P(\beta_i; \lambda, \gamma)$$

Penalization methods – SCAD

The SCAD penalty:

$$\psi_{\lambda}(\beta) = \sum_{i=1}^{p} P(\beta_i; \lambda, \gamma)$$

where the univariate SCAD penalty is

$$P(x; \lambda, \gamma) = \begin{cases} \lambda |x|, & \text{if } |x| \le \lambda, \\ \frac{2\gamma\lambda|x| - x^2 - \lambda^2}{2(\gamma - 1)}, & \text{if } \lambda < |x| < \gamma\lambda, \\ \frac{\lambda^2(\gamma + 1)}{2}, & \text{if } |x| \ge \gamma\lambda, \end{cases} \tag{4}$$

for some $\gamma > 2$. Often, $\gamma = 3.7$ is used in practice.

Penalization methods – SCAD

Structure of SCAD:

- ightharpoonup Coincide with Lasso when $|x| \leq \lambda$
- lacktriangle Transition to a quadratic function with $\lambda < |x| < \gamma \lambda$
- Remain as a constant for all $|x| \ge \gamma \lambda$

Penalization methods - MCP

A second option to mitigate the underestimation of Lasso is the minimax concave penalty (MCP, (Zhang et al. 2010)):

$$\psi_{\lambda}(\beta) = \sum_{i=1}^p P(\beta_i; \lambda, \gamma)$$

where the univariate MCP is

$$P(x; \lambda, \gamma) = \begin{cases} \lambda |x| - \frac{x^2}{2\gamma}, & \text{if } |x| \le \gamma \lambda, \\ \frac{1}{2}\gamma \lambda^2, & \text{if } |x| > \gamma \lambda, \end{cases}$$
 (5)

for some $\gamma > 1$. Often, $\gamma = 3$ is used in practice.

Penalization methods - MCP

Structure of MCP:

- ▶ A quadratic function with $|x| \le \gamma \lambda$
- ightharpoonup A constant for all $|x| > \gamma \lambda$

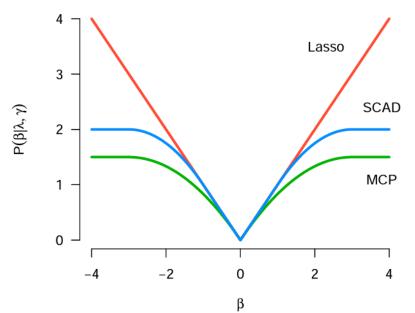


Figure 4: Vigualization of Lasso SCAD and MCD (from Patrick

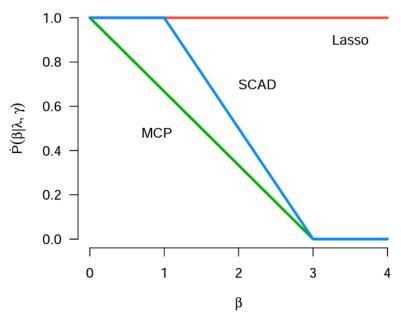


Figure 5: Visualization of derivatives of Lacco SCAD and MCD (from

Penalization methods - Elastic Net

▶ How to deal with correlated variables?

The elastic net penalty (Zou and Hastie 2005) is defined as

$$P_{\lambda}(\beta) = \lambda(\alpha \|\beta\|_{1} + \frac{1 - \alpha}{2} \|\beta\|_{2}^{2}), \tag{6}$$

which is a combination of the $L_1\mbox{-penalty}$ (Lasso) and the squared $L_2\mbox{-penalty}$ (ridge).

Penalization methods - Elastic Net

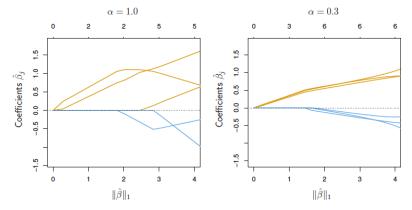


Figure 4.1 Six variables, highly correlated in groups of three. The lasso estimates $(\alpha=1)$, as shown in the left panel, exhibit somewhat erratic behavior as the regularization parameter λ is varied. In the right panel, the elastic net with $(\alpha=0.3)$ includes all the variables, and the correlated groups are pulled together.

Figure 6: An illustrative comparison of Lasso and Elastic Net on correlated features. Figure adopted from (Hastie, Tibshirani, and Wainwright 2015)

Penalization methods – Group Lasso

Consider a linear regression problem

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- Covariate variables in X have natural group structures
 e.g. categorical variables
- ▶ Aim: select (or not) a whole group of variables

Penalization methods – Group Lasso

Group Lasso (Yuan and Lin 2006) extends the Lasso penalty to the group selection (group sparsity) scenario. The group Lasso penalty is defined as

$$\psi(\beta) = \sum_{j=1}^{J} K_j \|\beta_j\|_2,$$
 (7)

- $lackbox{ }K_j$: adjust for the group sizes, e.g. $K_j=\sqrt{p_j}$

Penalization methods – Group Lasso

Why group Lasso can promote sparsity at the group level?

 \blacktriangleright It applies Lasso to the L_2 norm of each subvector of each group

 $Lasso-type\ penalization\ at\ the\ group\ level;$

Ridge-type penalization at the individual level.

Want the sparsity at the individual level as well?

It is called bi-level variable selection (See Homework).

Penalization methods – Group SCAD/MCP

Can SCAD and MCP be extended to the group selection scenario?

Yes!

▶ A more general class of group selection penalties:

$$\psi(\beta) = \sum_{j=1}^{J} P(\|\boldsymbol{\beta}_j\|_2; K_j \lambda, \gamma), \tag{8}$$

where P is the univariate SCAD or MCP penalty.

Penalization methods – Distance penalization

Consider a very general setting

$$\min_{\beta} \ \ell(\beta) \quad \text{subject to } \beta \in C, \tag{9}$$

where $\ell(\beta)$ is the negative log-likelihood, and C is the constraint set that specifies the required structure on β .

- Very general in the sense that the structure of β is coded as a constraint on β .
- Sparsity case: $C = \{\beta: \|\beta\|_0 \le k\}$ with k as an positive integer controlling the sparsity of β .

Penalization methods – Distance penalization

Distance penalization for constrained estimation

$$\min_{\beta} \ \ell(\beta) + \frac{\lambda}{2} \mathsf{dist}(\beta, C)^2. \tag{10}$$

where

$$\frac{1}{2} \operatorname{dist}(\beta, C)^2 = \min_{u \in C} \frac{1}{2} \|\beta - u\|_2^2.$$
 (11)

Sparse logistic regression in cancer classification

- Data: leukemia patient samples
 - acute lymphoblast leukemia (ALL), 49 samples
 - acute myeloid leukemia (AML), 23 samples
 - each sample contains the profile of 7129 genes
 - available at https://search.rproject.org/CRAN/refmans/propOverlap/html/leukaemia.html
- ▶ Aim: leukemia subtype classification & gene selection

Sparse logistic regression in cancer classification

Consider a general binary classification problem. The data is given in the format $\{y_i,x_i\}_{i=1}^n$, where $y_i\in\{0,1\}$ indicates the class label and $x_i\in\mathbb{R}^p$ contains the p covaraiate variables of the i-th sample.

The (linear) logistic regression model assumes the following conditional probability:

$$Pr(y = 1|x) = \frac{e^{x^T \beta}}{1 + e^{x^T \beta}}$$

Sparse logistic regression in cancer classification

The logistic model is fitted by minimizing the negative binomial log-likelihood of the data

$$\min_{\beta} -\ell(\beta) + \lambda \|\beta\|_1 \tag{12}$$

- $\blacktriangleright~\ell(\beta) = \sum_{i=1}^n [y_i x_i^T \beta \log(1 + x_i^T \beta)]$ is the negative log-likelihood
- $\|\beta\|_1$ is the penalty term for sparsity
- $ightharpoonup \lambda$ is the regularization parameter

Penalized likelihood for scRNA-seq data analysis

- UMI count data
 - For gene g in cell c, the UMI count is x_{gc}
- \blacktriangleright What's the distribution of x_{gc} ?
 - Binomial distribution

$$x_{gc} \sim NB(\mu_{gc}, \theta_g)$$
, $\ln \mu_{gc} = \beta_{g0} + \ln n_c$

where θ_g is the gene-specific dispersion parameter, $n_c = \sum_g x_{gc}$ is the total sequencing depth and the variance of the NB distribution is $\mu_{gc} + \mu_{gc}^2/\theta_g$.

Penalized likelihood for scRNA-seq data analysis

- ▶ UMI count data
 - For gene g in cell c, the UMI count is x_{gc}
- \blacktriangleright What's the distribution of x_{qc} ?
 - Zero-inflated mixture distribution

$$Pr(x_{gc} = x) = (1 - \pi_g)I(x = 0) + \pi_gI(x \neq 0)F(x|\mu_{gc}, \sigma_g^2)$$

Penalized likelihood for scRNA-seq data analysis

- Penalization in scRNA-seq data analysis?
 - clustering / cell cell subgroup detection
 - gene selection
 - Other tasks

Recap on Penalization

- Penalization is a strategy
 - ▶ not just for sparsity; not only for likelihood-based models
- ► A general penalization framework:

$$\min_{\beta} \; \mathsf{loss}(\beta) + \mathsf{penalty}(\beta) \tag{13}$$

- loss(β) is derivated from the specific problem
 - ightharpoonup penalty(eta) is defined according to the structure of eta
- Penalization in other applications:

classification/clustering/PCA/CCA/matrix recovery

Recap on Penalization

Penalization in classification — L_1 -regularized SVM

$$\min_{\beta} \ \frac{1}{n} \sum_{i=1}^{n} [1 - y_i f(x_i; \beta)]_+ + \lambda \|\beta\|_1$$
 (14)

- ▶ The first term is known as the hinge loss.
- ▶ If $f(x_i; \beta) = x_i^T \beta$, then it's a linear SVM.
- lacktriangle The second term is the penalty term promoting sparsity in eta.

References

Fan, Jianqing, and Runze Li. 2001. "Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties."

Journal of the American Statistical Association 96 (456): 1348–60.

Hastie, Trevor, Robert Tibshirani, and Martin Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations. CRC press.

Tibshirani, Robert. 1996. "Regression Shrinkage and Selection via the Lasso." *Journal of the Royal Statistical Society: Series B* (Methodological) 58 (1): 267–88.

Yuan, Ming, and Yi Lin. 2006. "Model Selection and Estimation in Regression with Grouped Variables." *Journal of the Royal*

Statistical Society: Series B (Statistical Methodology) 68 (1): 49–67.

Zhang, Cun-Hui et al. 2010. "Nearly Unbiased Variable Selection Under Minimax Concave Penalty." The Annals of Statistics 38

(2): 894–942.

Zou, Hui, and Trevor Hastie. 2005. "Regularization and Variable Selection via the Flastic Net." Journal of the Royal Statistical