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Abstract 

The increasing availability of healthcare data from diverse sources, such as large 

biobanks, electronic healthcare records, medical tests, and wearable sensors, has paved the 

way for the development of novel machine learning (ML) models. These models aim to 

capture the complexity of human health and disease, thereby enhancing healthcare data 

analysis. This dissertation addresses three major topics within this domain, presenting 

innovative solutions for analyzing multi-modal mixed-type data, federated learning for 

functional regression, and privacy-preserving telemedicine. 

The first topic introduces a Multi-modal Mixed-type Structural Equation Model 

(M2-SEM) with structured sparsity for subgroup discovery from heterogeneous healthcare 

data. This model effectively handles both continuous and categorical data modalities 

through a novel Gauss-Hermite-enabled Expectation-Majorization-Minimization (GH-

EMM) algorithm. Extensive simulation studies and applications to cardiometabolic risk 

factors demonstrate the model's ability to identify at-risk subgroups, highlighting its 

potential for enabling targeted health interventions and improving population health 

management. 

The second topic focuses on Federated Function-on-Function Regression with an 

efficient Gradient Boosting algorithm (fed-GB-LSA). This approach ensures privacy-

preserving telemedicine by allowing collaborative model training across multiple data 

sources without sharing sensitive data. The GB-based algorithm facilitates the sparse 

selection of functional and non-functional features, providing an efficient estimation 
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method. Its application to the telemonitoring of Obstructive Sleep Apnea (OSA) showcases 

the model's capability to maintain performance comparable to global models while 

preserving patient privacy, thereby supporting remote health monitoring and personalized 

treatment plans. 

The third topic extends the research to Vertical Federated Learning (VFL) with 

Differential Privacy for function-on-function regression models. By integrating differential 

privacy into the federated gradient boosting process, we address the critical trade-off 

between model performance and privacy protection. Empirical results from simulation 

studies and a case study on OSA validate the method's robustness and practical relevance, 

demonstrating its applicability in privacy-sensitive healthcare environments where data 

security and patient confidentiality are paramount. 

Overall, this dissertation significantly advances the field of healthcare data analysis 

by developing innovative machine learning models and algorithms that address the 

complexities of multi-modal mixed-type and functional health data. These methodologies 

ensure data privacy and computational efficiency, laying a strong foundation for future 

research and development. The findings and approaches proposed here contribute to 

improving health outcomes and advancing personalized medicine, ultimately enhancing 

healthcare delivery and patient care. 
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If I have seen further, it is by standing on the shoulders of Giants.  
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Chapter 1 Introduction 

1.1 Background 

Advancements in diagnostic imaging, smart sensing, and health information 

systems have led to a data-rich environment in healthcare. It is now feasible to meticulously 

track all information related to a patient’s diagnosis, treatment, and care. This creates 

significant opportunities for Personalized Medicine (PM), enabling precise medical 

decision-making tailored to individuals at optimal times. However, the volume and 

complexity of this data exceed existing modeling capabilities of statistical methods. 

Additionally, the extensive use of statistical models raises concerns about privacy breaches, 

given the highly sensitive nature of healthcare data pertaining to individuals and service 

providers. 

The aim of this research is to develop privacy-preserving statistical machine 

learning and data fusion methodologies to enhance the quality and performance of 

healthcare systems, from accurate diagnosis to phenotype discovery. 

This dissertation addresses three emerging challenges in healthcare by developing 

novel statistical models that cater to the unique data structures and objectives of specific 

problem domains. The first topic focuses on multimodality imaging data fusion and the 

development of novel latent variable models for phenotype discovery. This involves 

integrating diverse imaging modalities to uncover latent phenotypes, enhancing our 

understanding of complex diseases. The second topic explores federated function-on-

function regression for privacy-preserving telemedicine. This approach enables the 
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analysis of functional data from multiple sources without compromising patient privacy, 

thus facilitating secure and effective remote healthcare services. The third topic delves into 

vertical federated gradient boosting for functional regression with differential privacy. This 

method aims to improve the accuracy of functional regression models while ensuring the 

privacy of sensitive healthcare data through differential privacy techniques. Collectively, 

these studies aim to advance the field of personalized medicine by providing robust, 

privacy-preserving statistical tools that enhance the quality and performance of healthcare 

systems. Through these contributions, this research seeks to address the critical balance 

between leveraging rich healthcare data for improved medical decision-making and 

safeguarding the privacy of individuals and healthcare providers. 

1.2 Summary of Research Topics and State of the Art 

Topic (I): Multi-modal mixed-type structural equation modeling with structured 

sparsity for subgroup discovery from heterogeneous health data. The increasing 

availability of health data from resources such as large biobanks, electronic healthcare 

records, medical tests, and wearable sensors, has set the stage for the development of novel 

machine learning (ML) models for multi-modal mixed-type data to capture the complexity 

of human health and disease. Clustering is a type of ML model that aims to identify 

homogenous subgroups from heterogeneous data, providing a data-driven solution to 

targeted, subgroup-specific studies and interventions. While such data contain diverse and 

complementary information to facilitate decision-making and improve population health, 

clustering of high-dimensional multi-modal mixed-type data poses major challenges to 

existing ML and statistical models. We propose a novel Multi-modal Mixed-type Structural 

Equation Model (M2-SEM) with structured sparsity to cluster heterogeneous health data 
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for precise subgroup discovery. To accommodate a mix of continuous and categorical data 

modalities, we developed a novel Gauss-Hermite-enabled Expectation-Majorization-

Minimization (GH-EMM) algorithm that integrates the GH quadrature and the 

Majorization Maximization (MM) algorithm within the Expectation Maximization (EM) 

framework for efficient model estimation. The proposed M2-SEM and GH-EMM are first 

tested in extensive simulation studies in comparison with benchmarks, and then applied to 

identify subgroups of individuals with low- and high-risk of developing adverse 

cardiometabolic (CM) outcomes based on a full spectrum of CM risk factors such as poor 

nutrition and mental health, physical inactivity, and sleep deprivation. These findings shed 

light on the promise of using multi-modal mixed-type health data for early identification 

and targeted intervention of at-risk individuals for health promotion at the population level. 

Topic (II): Federated Function-on-Function Regression with an Efficient Gradient 

Boosting Algorithm for Privacy-Preserving Telemedicine. Federated Learning (FL) is an 

emerging computing paradigm to collaboratively train Machine Learning (ML) models 

across multi-source data while preserving privacy. The major challenge of the “meaningful” 

implementation of FL for any ML model is how to guarantee that the federated ML model 

can achieve comparable performance compared to the global model trained using the 

combined data. Moreover, there are very limited studies on FL of the functional regression 

models that analyze functional data, a commonly encountered type of data in many fields. 

This study develops the first-of-its-kind federated Gradient Boosting algorithm with the 

Least Squares Approximation (fed-GB-LSA) for efficient, privacy-preserving federated 

learning of the function-on-function regression with several distinct merits: (1) The GB-

based algorithm allows the sparse selection of multivariate functional and non-functional 
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features in the function-on-function regression prediction, which is not straightforward in 

the functional regression; (2) The parameter estimation by the GB algorithm results in 

separate sub-optimization problems with explicitly analytical solutions for each of the 

features, providing an efficient estimation algorithm for the function-on-function 

regression; (3) The LSA-enabled fed-GB provides a “one-shot” approach for FL that is 

communicationally and statistically efficient, providing theoretical guarantees to the 

federated model’s performance without data sharing across local servers. The proposed 

fed-GB-LSA is tested in extensive simulation studies and applied in a real-world dataset 

for privacy-preserving telemonitoring of Obstructive Sleep Apnea (OSA). 

Topic (III): Vertical Federated Functional Gradient Boosting with Differential 

Privacy. Vertical Federated Learning (VFL) has emerged as a significant technique for 

facilitating data collaboration among multiple organizations while complying with privacy 

regulations such as the General Data Protection Regulation (GDPR). This chapter presents 

an innovative approach to VFL by integrating Gradient Boosting for Functional Regression 

with Differential Privacy, specifically aimed at function-on-function regression models. 

The study addresses the challenge of preserving model performance while ensuring privacy 

through differentially private gradient sharing. The proposed method is evaluated for its 

prediction accuracy and privacy-preserving capability through simulation studies. The 

findings indicate a trade-off between prediction accuracy and privacy protection, with 

stricter privacy requirements leading to a decrease in prediction accuracy. However, 

enhanced privacy protection is confirmed through a membership inference attack. A case 

study on Obstructive Sleep Apnea (OSA) using data from the Sleep Heart Health Study 

(SHHS) illustrates the practical application and effectiveness of the proposed method. The 
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SHHS dataset includes functional features from electrocardiogram (ECG) and 

electroencephalogram (EEG) signals, in addition to non-functional features. The results 

demonstrate that the federated model achieves performance comparable to a global model 

and superior to local models, highlighting its potential in privacy-sensitive healthcare 

settings. This work advances the field of federated learning by incorporating differential 

privacy into functional regression, setting the stage for future developments in privacy-

preserving predictive modeling. 

1.3 Significance and Contribution of Research 

Three studies have been conducted to address these issues. In the first study, we 

introduce a novel Multi-modal Mixed-type Structural Equation Model (M2-SEM) with 

structured sparsity, designed to cluster heterogeneous health data for precise subgroup 

discovery. M2-SEM employs a unique double 𝐿21  penalized likelihood formulation, 

facilitating the hierarchical selection of informative imaging modes and features. This 

formulation satisfies a Quadratic Majorization (QM) condition, enabling the development 

of an efficient Group-wise Majorization Descent (GMD) algorithm for model estimation. 

To handle a combination of continuous and categorical data modalities, we developed an 

innovative Gauss-Hermite-enabled Expectation-Majorization-Minimization (GH-EMM) 

algorithm. This algorithm integrates the Gauss-Hermite quadrature and the Majorization 

Maximization (MM) algorithm within the Expectation Maximization (EM) framework for 

efficient model estimation. The proposed M2-SEM and GH-EMM were rigorously tested 

through extensive simulation studies against benchmark models and subsequently applied 

to identify subgroups of individuals at low and high risk for adverse cardiometabolic (CM) 

outcomes. These outcomes were assessed based on a comprehensive spectrum of CM risk 
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factors, including poor nutrition, mental health issues, physical inactivity, and sleep 

deprivation. 

The second study presents the development of an unprecedented federated Gradient 

Boosting algorithm with the Least Squares Approximation (fed-GB-LSA), aimed at 

efficient and privacy-preserving federated learning for function-on-function regression. 

This algorithm offers several distinct advantages: (1) It allows for the sparse selection of 

multivariate functional and non-functional features in function-on-function regression 

prediction, which is typically challenging in functional regression; (2) The parameter 

estimation by the GB algorithm results in separate sub-optimization problems with 

explicitly analytical solutions for each feature, ensuring efficient estimation for function-

on-function regression; (3) The LSA-enabled fed-GB provides a “one-shot” approach for 

federated learning that is both communicationally and statistically efficient, with 

theoretical guarantees for the federated model’s performance without necessitating data 

sharing across local servers. The proposed fed-GB-LSA was subjected to extensive 

simulation studies and applied to a real-world dataset for privacy-preserving 

telemonitoring of Obstructive Sleep Apnea (OSA). 

In the third study, we introduce an innovative approach to Vertical Federated 

Learning (VFL) by integrating Gradient Boosting for Functional Regression with 

Differential Privacy, specifically targeting function-on-function regression models. This 

study addresses the challenge of preserving model performance while ensuring privacy 

through differentially private gradient sharing. It demonstrates that with minimal sacrifice 

in model performance, privacy can be maintained at a high level. The proposed method 

was evaluated for its prediction accuracy and privacy-preserving capability through 
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simulation studies, with prediction accuracies assessed under various privacy settings. 

Additionally, the privacy-preserving capability was tested via membership inference 

attacks, yielding outstanding results. Moreover, the proposed method was applied to a 

real-world dataset for the privacy-preserving telemonitoring of Obstructive Sleep Apnea 

(OSA). The results indicated that the global model under VFL significantly outperforms 

any of the local models while maintaining the patient's privacy. 

Next three chapters provide detailed discussion of challenges, data, methods and 

results of each of study. 

1.4 Dissertation Organization 

The remainder of this dissertation is organized as follows. Chapter 2 develops a 

Multi-modal mixed-type structural equation modeling with structured sparsity for 

subgroup discovery from heterogeneous health data. Chapter 3 proposes a federated 

function-on-function regression with an efficient gradient boosting algorithm for privacy-

preserving telemedicine. Chapter 4 introduces a vertical federated functional gradient 

boosting model with differential privacy. Finally, Chapter 5 presents the discussion and 

future work. 
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Chapter 2 Multi-modal Mixed-type Structural Equation 

Modeling with Structured Sparsity for Subgroup Discovery 

from Heterogeneous Health Data 

2.1 Introduction 

Subgroup discovery is of critical importance for heterogeneity delineation for many 

complex systems, particularly for those systems in which domain knowledge of the 

underlying mechanisms is too scarce to explicitly articulate and quantify the individual-to-

individual similarities and dissimilarities. Fortunately, such information may have already 

been embedded in the data, which makes the data-driven approach a promising solution to 

delineate the heterogeneity in complex systems. Below we present several case studies 

across various domains that demand subgroup discovery.  

• Subgroup discovery is critical to health management of chronic conditions such as 

cardiometabolic (CM) diseases. CM diseases are interconnected conditions including 

hypertension, diabetes, and cardiovascular diseases, known to be the leading cause of 

preventable death in the United States and worldwide (Shah et al., 2019). There is an 

estimated 47 million Americans living with CM diseases (American College of 

Cardiology, 2021) costing US healthcare systems more than $677 billion each year 

(Fryar et al., 2012; American Diabetes Association, 2018; Kirkland et al., 2018). One 

major task in CM health management is to identify high- vs low-risk subgroups in a 

large, vulnerable, and heterogeneous population to guide cost-effective and targeted 

disease intervention and management, eventually leading to improved population 

health (Buxton et al., 2018; Liu et al., 2021; Jiang et al., 2022; Alramadeen et al., 2023).   
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• With the help of advanced metering infrastructure, modern power systems can obtain 

real-time data with high resolution and large volumes. This enables researchers to 

discover power consumption patterns by clustering (Si et al., 2021), which can be used 

to support customer segmentation, enact tariff policies, detect load anomalies, and 

support load forecasting and demand-side responses. The inherent fluctuations and 

intermittent and uncertain characteristics of clean energy sources highlight the 

importance of a clear understanding of demand-side characteristics to ensure the power 

system is resilient and robust. Subgroups are identified based on the number, magnitude, 

draft, and lag of the peaks, as well as other characteristics of the demand curves over 

different time scales, ranging from residential to industrial sectors (Ryu et al., 2019; 

Lin et al., 2017). 

• Clustering users and content on social media can provide critical information on many 

aspects, such as user behavior, content popularity, sentiment analysis, and target 

audience segmentation, which can be useful for businesses, marketers, and social media 

platforms to better understand and engage their users. For example, identifying medium 

vulnerabilities is often challenging for organizations because it is difficult to balance 

the cost of solving them with the associated risks. However, with the help of subgroup 

discovery, medium vulnerabilities can be timely identified by detecting continued 

discussions on social media (Allen et al., 2017). 

Clustering is the natural choice for subgroup discovery from big data in complex 

systems (Tan et al., 2016, Sutherland et al., 2024, Mueller et al., 2024). However, there are 

significant challenges in employing conventional clustering methods to discover subgroups 

from high-dimensional heterogeneous data collected in the complex system of interest. 
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Specifically, big data has many challenging properties that overwhelm the modeling 

capacity of many existing machine learning and statistical models. First, it is common to 

have data of multi-modalities to characterize multi-faceted aspects of the complex system, 

providing complementary information for more precise differentiation among 

heterogeneous subjects. Taking CM data as an example, these CM diseases are known to 

be associated with a spectrum of multi-modal risk factors including but not limited to 

socioeconomics, sleep-related, nutritional, environmental, and other behavioral factors, 

upon which more precise determination of CM risk subgroups can be made. Second, due 

to distinct data collection procedures, multiple data modalities are likely to be mixed-typed, 

e.g., continuous, nominal, or ordinal. For example, the data modality collected by wearable 

sensors can be continuous, whereas survey data collection can result in a modality of 

categorical ordinal features on the Likert scale. Third, pooling together a large number of 

features in multi-modalities is likely to result in a dataset that has a latent factor structure 

underlying the original features in each modality. The presence of modality-specific latent 

factors needs to be considered in the modeling for both dimension reduction and ease of 

interpretation. Last but not least, the high dimensionality of multi-modal features requires 

structured variable selection approaches to be integrated within the clustering algorithm. 

That is, the variable selection strategy should consider the hierarchy of features within 

multi-modalities by selecting significant features by modality, aiming to reveal the 

significance of each modality in differentiating CM risk subgroups and facilitating domain 

knowledge discovery from high-dimensional multi-modal data.  

To address these challenges, this study proposes to develop a novel Multi-modal 

Mixed-type Structural Equation Model (M2-SEM) with structured sparsity for precise 
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subgroup discovery from multi-modal, mixed-type, high-dimensional data. The proposed 

M2-SEM results in a complex objective function with both observed data and latent 

variables that need to be estimated by an Expectation Maximization (EM) framework. 

However, the traditional EM does not suffice due to the presence of categorical features, 

which introduce non-analytical formulas that overwhelm the traditional EM algorithm. 

While Monte Carlo (MC) simulation can be integrated within the EM to obtain a numerical 

approximation to the non-analytical formulas by repeatedly random sampling, MC EM 

relies on a large number of simulation runs and is computationally inefficient, especially 

for high-dimensional big data. Instead, this chapter proposes to use the Gauss-Hermite (GH) 

Quadrature, a numerical optimization approach, to approximate the non-analytical terms, 

thus achieving a drastic reduction in the computational cost. Additionally, the GH-enabled 

analytical terms are proven to have good computational properties such as Lipschitz-

continuity and concavity, which can be efficiently solved by a Majorization-Minimization 

(MM) algorithm. Consequently, this chapter proposes a novel GH-enabled Expectation 

Majorization Minimization algorithm (GH-EMM) for model estimation. Finally, the 

proposed M2-SEM and GH-EMM are examined in simulation studies and then applied to 

a real-world dataset for CM subgroup discovery from multi-modal mixed-type CM data. 

The findings of the proposed model are consistent with medical intuition and domain 

knowledge that shed light on precise CM risk stratification and CM health promotion in 

the population.   

The novel contributions of the proposed M2-SEM include the following: 1.  

development of a novel M2-SEM that can cluster multi-modal mixed-type data while 

preserving the modal-specific information and providing structured sparse selection; 2.  
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proposal of a novel GH-enabled Expectation-Majorization-Minimization (GH-EMM) for 

efficient model estimation; 3. deployment of the proposed machine learning method to 

identify CM subgroups from the multi-modal mixed-type real-world dataset to enrich the 

knowledge bank of CM subgroups and facilitate Precise Medicine in CM health for the 

first time. The remainder of this chapter is structured as follows: Chapter 2.2 discusses the 

relevant works; Chapter 2.3 introduces the mathematical formulation of the proposed M2-

SEM; Chapter 2.4 describes the efficient model estimation algorithm; Chapter 2.5 presents 

the simulation studies; Chapter 2.6 discusses the application of the proposed method on a 

real-world dataset; Chapter 2.7 concludes the chapter.   

2.2 Literature Review 

Clustering is the most important subfield of unsupervised learning. Compared with 

supervised learning methods that depend on labeled data to “supervise” the model to 

classify or predict the response variable of interest, clustering handles unlabeled data by 

grouping heterogeneous samples into relatively homogeneous clusters that aim to 

maximize the within-cluster similarities and between-cluster dissimilarities. Most of the 

existing clustering methods are heuristic approaches such as K-mean, hierarchical 

clustering, and DBSCAN (Tan et al., 2016). K-mean is the most classic center-based 

clustering method. That is, a cluster that results from K-mean contains a set of observations 

in which each observation is closer to the centroid of this particular cluster than to the 

centroid of any other cluster. Hierarchical clustering is an agglomerative clustering method 

that produces a hierarchical clustering tree by starting with each observation as a singleton 

cluster and then repeatedly merging the two closest clusters until a single, all-encompassing 

cluster remains. DBSCAN is a density-based clustering method that defines clusters as 
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dense regions of observations while observations in low-density regions are classified as 

noise and omitted.   While heuristic approaches are widely used, they face several common 

challenges such as subjective selection of optimal number of clusters and lack of statistical 

rigor.  

Model-based clustering (MBC) encompasses clustering methods that are based on 

statistical models and therefore can leverage rigorous statistical criteria for model selection 

and inference. Gaussian Mixture Model (GMM) is the most common MBC method that 

models the data as a mixture of several Gaussian distributions. Each distribution 

corresponds to a cluster and the mean and covariance of each distribution provide a 

description of the corresponding cluster in terms of its center and spread. However, the 

conventional GMM can handle only continuous data, and there is a lack of consideration 

of categorical data. In recent years, increasing attention has been given to extending the 

classic GMM to cluster mixed-type data including both continuous and categorical data, 

due to the increasing need for many real-world applications. Lebret et al. (2015) proposed 

a mixed-MBC method for mixed-type data by modeling continuous data and categorical 

data with Gaussian distribution and multinominal distribution, respectively. Marbac et al. 

(2020) proposed a mixed-MBC method for mixed-type data and used BIC with a modified 

Expectation-Maximization algorithm for variable selection in mixed data clustering. The 

probability distributions of the mixed-type features are jointly considered in an integrated 

complete-date likelihood for model estimation. However, multinominal distribution can be 

used to model only categorical nominal features, and therefore both methods cannot handle 

categorical ordinal features. Alternatively, McParland and Gormley (2016) developed 

another mixed-MBC procedure by assuming each observed categorical feature as a 



14 

 

categorical nominal or ordinal manifestation of the latent continuous variable following a 

Gaussian distribution, while clustering is based on the continuous latent variables. 

However, none of the mixed-MBC has considered either latent variable or multi-modal 

data structure.    

Structural Equation Models (SEMs) are referred to as a set of statistical models 

used to analyze the interconnected relationship of both observed variables and latent 

variables, providing a flexible framework for developing and processing complex 

relationships among multiple variables (Wang and Wang, 2019). Depending on different 

applications, SEMs can successfully accommodate various interconnected observed and 

latent variables through model specification to achieve tasks in both supervised and 

unsupervised learning. With appropriate specifications, an SEM can achieve clustering of 

multi-modal data with latent variable structure by assuming a latent categorical variable 

indicating the cluster membership to be linked with multi-modal data. However, most 

existing SEMs don’t consider sparse learning and variable selection in the model 

estimation and thus fall short in modeling high-dimensional data. There are limited studies 

on sparse SEMs. The sparse-aware SEM was developed by employing lasso penalties for 

variable selection, and the proposed model can be estimated with the Block Coordinate 

Descent algorithm integrated with the Proximal Alternating Linearized Minimization 

(PALM) (Cai et al., 2013; Zhou and Cai, 2022). However, the proposed sparse-aware 

method can only consider SEMs with observed variables.  Jacobucci et al. (2016) proposed 

a general sparse SEM framework with both observed and latent variables by comparing the 

similarity between the model-implied covariance with a sample covariance matrix but it 

may result in suboptimal solutions in empirical studies (Huang, 2020). Alternatively, 
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Huang et al. (2017) and Huang (2018) proposed a penalized likelihood (PL) method of the 

complete likelihood function in SEMs using smoothly clipped absolute deviation (SCAD) 

or Minimax Concave Penalty (MCP) approaches that were shown to achieve better 

convergence in model estimation (Huang, 2020). However, all the existing sparse SEMs 

assume that latent variables follow Gaussian distributions, and thus cannot be used for 

clustering-type SEMs in which a categorical latent variable is used to indicate latent cluster 

membership, not to mention clustering of multi-modal data.   

2.3 Model Formulation 

2.3.1 Conceptual framework 

The objective of this study is to develop a novel generalized SEM with structured 

sparsity to cluster multi-modal mixed-typed high-dimensional data to reveal the 

heterogeneity in complex systems with little to no domain knowledge of the underlying 

mechanisms to explicitly articulate and quantify the heterogeneity. To fix the notations, let 

{{𝒙𝑖
(𝑚)
}
𝑚=1

𝑀

}
𝑖=1

𝑁

 denote features nested within 𝑀 different modalities across 𝑁 subjects to 

be clustered. 𝒙𝑖
(𝑚)

 is a 𝑃-dimensional feature vector within the 𝑚-th modality for subject 𝑖 

for 𝑖 = 1,… , 𝑁  and 𝑚 = 1,… ,𝑀 . To simplify the notation, we assume each modality 

contains the same type of features and denote the 𝑀1  numerical modalities and 𝑀2 

categorical modalities with {{𝒙𝑖
(𝑚)
}
𝑚=1

𝑀1
}
𝑖=1

𝑁

and {{𝒙𝑖
(𝑚)
}
𝑚=𝑀1+1

𝑀1+𝑀2
}
𝑖=1

𝑁

, respectively. For 

example, a numerical modality {𝒙𝑖
(𝑚)
}
𝑖=1

𝑁

 may consist of sleep measures in a sensor-based 

sleep study, e.g., measures for sleep events, heart rate, oxygen saturation, or sleep 

architecture, whereas a categorical modality may consist of a set of questions from a health 
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survey questionnaire in a Likert scale. Next, we introduce the conceptual framework of the 

proposed method as shown in Figure 1.  

 

Figure 1: Graphical illustration of the proposed sparse SEM for multi-modal data 

clustering 

The first step is to link 𝒙𝑖
(𝑚)

 with a small number of latent factors 𝜼𝑖
(𝑚)

 with 

Generalized Linear Models (GLMs) (Dobson and Barnett, 2018).  

𝑔(𝒙𝑖
(𝑚)
) = 𝜶(𝑚) +  𝑳(𝑚)𝜼𝑖

(𝑚)
+  𝐁(𝑚)𝒛𝑖

(𝑚)
+ 𝜺𝑖

(𝑚)
  for 𝑖 = 1,… ,𝑁 and  𝑚 =  1,… ,𝑀.    

(2.1)  

where 𝑁 is the total number of samples and 𝑀 is the total number of modalities; 𝑔(∙) is the 

logit function in GLM that takes different forms depending on the type of features 𝒙(𝑚), 

i.e., ordinal, nominal, or continuous; 𝜶(𝑚) is the intercept and can be level-specific for 

categorical variables; 𝜼(𝑚) are unobserved latent factors while 𝒛(𝑚) are known covariates. 

The next step is to enable probabilistic clustering by linking the latent factors {𝜼(𝑚)}
𝑚=1

𝑀
 

with another latent factor 𝒔 that indicates the cluster membership. We assume the total 
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number of clusters is 𝐾 and let 𝐬 = (𝑠1, … , 𝑠𝐾)
𝑇  follow a multinomial distribution. For 

example, if the subject belongs to the 𝑘-th cluster, then 𝑠𝑘 = 1. Applying the similar idea 

of probabilistic clustering (Reynolds, 2009), the proposed method assumes that the 

distribution of latent factors 𝜼(𝑚)  depends on the subject’s cluster membership, e.g., 

𝜼(𝑚)|𝑠𝑘 = 1~𝑁(𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘)). As a result, the distribution of  𝜼(𝑚) can be written as the 

mixture of 𝐾 Gaussian distributions as follows:  

                      𝜼(𝑚)~∑ 𝑤𝑘𝑁(𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘))𝐾

𝑘=1 ,                                    (2.2) 

where 𝒘 = (𝑤1, … , 𝑤𝐾)
𝑇 corresponds to the probabilities of different clusters. Last, we 

have included many modalities and features in clustering and propose to employ sparse 

learning techniques to select informative modalities and features. The three steps are not 

separate but need to be jointly estimated. Compared with existing clustering methods, the 

proposed M2-SEM has the following distinct advantages.  

• To accommodate modalities with mixed-typed features, the GLM can be used to link 

mixed-typed features 𝒙𝑖
(𝑚)
 with the latent factors 𝜼𝑖

(𝑚)
 depending on the feature types, 

i.e., ordinal, nominal, or continuous. For example, surveys are cost-effective strategies 

to collect data from a large population and a data modality of survey questions often 

uses Likert scales, resulting in a large number of categorical ordinal features that 

instead require an ordinal GLM.   

• To factor out the impact of known covariates 𝒛𝑖
(𝑚)

 on clustering, these covariates can 

be considered as additional predictors in the model (2.1). For example, blood-based 

biomarkers or mental health conditions could be significantly associated with 
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covariates such as age and gender. Such measures should be adjusted for the known 

covariates when used in clustering. 

• To accommodate multi-modalities, a modality index 𝑚 is used to indicate different 

data modality for 𝑚 = 1,… ,𝑀. Instead of pooling features across multi-modalities, 

we propose the modality-specific latent factor modeling as shown in Figure 1 to 

preserve modality-specific information.  

• To address high-dimensionality, we propose a structured sparse learning approach to 

hierarchically select data modalities and features. That is, if a modality is selected as 

non-informative to clustering, all its features are excluded from clustering.  

2.3.2 Sparse Multi-modal Mixed-type Structural Equation Model (M2-

SEM) 

This subchapter derives the GLM-type mathematical formulation of M2-SEM in 

detail. For a numerical modality, a regression model is applied to link features 𝒙𝑖
(𝑚)

∈ 𝑹𝑃×1 

with latent factors 𝜼𝑖
(𝑚)

∈ 𝑹𝑄×1 (𝑄 ≪  𝑃) and covariates 𝒛𝑖
(𝑚)

∈ 𝑹𝑅×1, i.e.,  

   𝒙𝑖
(𝑚)

= 𝐋(𝑚)𝜼𝑖
(𝑚)

+ 𝐁(𝑚)𝒛𝑖
(𝑚)

+ 𝜺𝑖
(𝑚)

 for 𝑖 = 1, … , 𝑁 and  𝑚 =  1,… ,𝑀1.       (2.3) 

Note that the intercept term 𝜶(𝑚) in (2.1) can be omitted for continuous feature 𝒙𝑖
(𝑚)

 for 

simplicity. 𝐋(𝑚) and 𝐁(𝑚)are common loading matrices of size 𝑃 × 𝑅, 𝑃 × 𝑄, respectively. 

𝜺𝑖
(𝑚)

 follows a zero-mean Gaussian distribution with a covariance matrix 𝚿(𝑚)  of size 

𝑃 × 𝑃 . For continuous feature 𝒙𝑖
(𝑚)

, the GLM-type formulation reduces to the ordinal 

regression model for which the intercept term can be omitted for simplicity.  For a 

categorical ordinal or nominal modality, we assume it contains 𝑃 categorical features with 

𝐶 levels. For example, the categorical ordinal modality can be individual survey items in 
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the Epworth Sleepiness Scale (ESS) to rate daytime sleepiness, in which each feature uses 

a 4-point Likert scale with 1-4 corresponding to “no chance of dozing”, “slight chance of 

dozing”, “moderate chance of dozing”, and “high chance of dozing”, respectively, i.e., 𝐶 =

4.  Similarly, a GLM is applied to the categorial modality resulting in the model as follows:   

𝑙𝑜𝑔(
P(𝒙𝑖

(𝑚)
 ≤  𝑐 × 𝟏𝑃)

1 − P(𝒙𝑖
(𝑚)

 ≤  𝑐 × 𝟏𝑃)
)    = 𝜶𝑐

(𝑚)
+  𝐋(𝑚)𝜼𝑖

(𝑚)
+ 𝑩(𝑚)𝒛𝑖

(𝑚)
+ 𝜺𝑖

(𝑚)
, 

for 𝑖 = 1,… ,𝑁 and 𝑚 =  𝑀1 + 1,  … ,  𝑀1 +𝑀2.  (2.4) 

For categorical ordinal modality, we have 𝜶1 ≤ 𝜶2 ≤ ⋯ ≤  𝜶𝐶−1  as the constraints 

inherited from GLM for ordinal responses due to the nondecreasing property of a 

cumulative distribution function (Agresti, 2010), while the same constraints are not 

required for categorical nominal modalities. The difference between models (2.2-2.3) and 

classic GLMs is that the predictors 𝜼𝑖
(𝑚)

 are unobserved latent factors and need to be 

estimated.  

Next, we enable clustering in the SEM framework by assuming a latent variable 

𝒔𝑖 = (𝑠1,𝑖, … , 𝑠𝐾,𝑖)
𝑇
 to indicate cluster membership for subject 𝑖. For example, if subject 𝑖 

belongs to the 𝑘 -th cluster, then 𝑠𝑘,𝑖 = 1  and 𝑠𝑘̃,𝑖 = 0  for 𝑘̃ ≠ 𝑘 . 𝐾  is the number of 

clusters. 𝒔𝑖  is assumed to follow a multinomial distribution with parameters 𝒘 =

(𝑤1, … , 𝑤𝐾)
𝑇 that correspond to the probabilities of different clusters. Then, we assume 

the distribution of a subject’s latent factors depends on its cluster membership and link the 

latent factor 𝜼𝑖
(𝑚)

 with the latent variable 𝒔𝑖 for 𝑚 = 1,… ,𝑀 as follows:  

𝜼𝑖
(𝑚)

= 𝐔(𝑚)𝒔𝑖 + 𝝃𝑖
(𝑚)
,                  (2.5) 

where 𝝃𝑖
(𝑚)
~𝑁(𝟎, 𝚺(𝑚))  and 𝐔(𝑚)  is a Q × 𝐾  coefficient matrix, i.e., 𝐔(𝑚) =

[𝝁(𝑚,1), … , 𝝁(𝑚,𝐾)]
𝑇
. Given a subject in cluster 𝑘, i.e., 𝑠𝑘,𝑖 = 1, the distribution of its latent 
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factors is a Gaussian distribution with mean 𝝁(𝑚,𝑘)  and covariance matrix  𝚺(𝑚) , i.e., 

𝜼𝑖
( 𝑚)

|𝑠𝑘,𝑖 = 1~𝑁(𝝁(𝑚,𝑘), 𝚺(𝑚)) , 𝑚 = 1,… ,𝑀 . In SEMs, model identifiability is a 

common issue that can be addressed by adding constraints on select parameters to ensure 

the uniqueness of the model estimate. Specifically, in this study, we add the constraints to 

the mean and covariance of the latent factors 𝜼𝑖
(𝑚)

 for 𝑚 = 1,… ,𝑀  to ensure that 

𝐸(𝜼𝑖
(𝑚)
) = 𝟎  and 𝑉𝑎𝑟(𝜼𝑖

(𝑚)
) = 𝐈 . The mean constraint can be easily satisfied by 

standardizing 𝒙𝑖
(𝑚)

. The covariance constraint can be satisfied using a mathematical trick 

as follows: Assume the original covariance, 𝑉𝑎𝑟(𝜼𝑖
(𝑚)
), is not an identity matrix and let 

𝐋(𝑚) be the original loading matrix. Using Cholesky Decomposition we can decompose 

𝑉𝑎𝑟(𝜼𝑖
(𝑚)
) = 𝝉𝑚,𝑖𝝉𝑚,𝑖

𝑇  and update the loading matrix by 𝐋(𝑚)′ = 𝐋(𝑚)𝝉𝑚,𝑖 . As 

𝑉𝑎𝑟(𝐋(𝑚)𝜼𝑖
(𝑚)
) = 𝐋(𝑚)𝑉𝑎𝑟(𝜼𝑖

(𝑚)
)𝐋(𝑚)

𝑇
= 𝐋(𝑚)𝝉𝑚,𝑖𝝉𝑚,𝑖

𝑇 𝐋(𝑚)
𝑇
= 𝐋(𝑚)′𝐋(𝑚)′𝑇, the updated 

𝐋(𝑚)′ automatically sets the covariance of the latent factors to be an identify matrix, i.e., 

the covariance constraint is satisfied. 

 Finally, we impose sparsity on models in (2.3-2.5) to achieve a hierarchical 

selection of modalities and features with two group lasso-based penalties. Specifically, the 

cluster differentiation in each modality, e.g., modality 𝑚, is based on the difference in 

cluster-specific mean values, e.g., {𝝁(𝑚,1), … , 𝝁(𝑚,𝐾)}. In other words, if the modality 𝑚 

does not contribute to clustering, it means that the mean values are invariant across all the 

clusters. Considering the constraint that 𝐸(𝜼𝑖
(𝑚)
) = ∑ 𝑤𝑘𝝁

(𝑚,𝑘)𝐾
𝑘=1 = 𝟎𝑄×1 , if 𝝁

(𝑚,𝑘) are 

invariant with respect to 𝑘, it is equivalent to that 𝝁(𝑚,𝑘) = 𝟎𝑄×1 for 𝑘 = 1,… . , 𝐾, i.e., 

𝐔(𝑚) = 𝟎𝑄×𝐾 . Therefore, to enable modality selection, a group lasso penalty is applied to 
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the vectorized {𝐔(1), … , 𝐔(𝑀)}  by treating parameters in each modality as a group. 

Moreover, for feature selection, a second group lasso penalty is employed to the coefficient 

matrices {𝐋(1), … , 𝐋(𝑀)} in the models (2.3-2.4) by treating each row of the coefficient 

matrices as a group. Take the continuous features in model (2.3) as an example. If the 𝑝-th 

row of a loading matrix 𝐋(𝑚) are estimated to be zeros, then the linear relationship between 

the 𝑝 -th corresponding feature in  𝒙𝑖
(𝑚)

 with all the latent factors 𝜼𝑖
(𝑚)

 is eliminated, 

resulting in the removal of this feature from clustering.  

The proposed M2-SEM contains many parameters to be estimated that can be put 

in a set 𝚯 = {𝚯1, 𝚯2, 𝚯3, 𝚯4} , where 𝚯1 = {𝚯1𝑚}𝑚=1
𝑀1 = {𝐋(𝑚), 𝐁(𝑚), 𝚿(𝑚)}

𝑚=1

𝑀1
, 𝚯2 =

{𝚯2𝑚}𝑚=𝑀1+1
𝑀1+𝑀2 = {{𝜶𝑐

(𝑚)
}
𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚), 𝚿(𝑚)}
𝑚=𝑀1+1

𝑀1+𝑀2

 , 𝚯3 = {𝚯3𝑚}𝑚=1
𝑀1+𝑀2 = {{𝝁(𝑚,𝑘), 𝚺(𝑚,𝑘)}

𝑘=1

𝐾
}
𝑚=1

𝑀1+𝑀2
, 

and 𝚯4 = {𝒘}. Let 𝐗𝑚 = {𝒙𝑖
(𝑚)
}
𝑖=1

𝑁

, 𝐙𝑚 = {𝒛𝑖
(𝑚)
}
𝑖=1

𝑁

, 𝐇𝑚 = {𝜼𝑖
(𝑚)
}
𝑖=1

𝑁

, and 𝐬 = {𝒔𝑖}𝑖=1
𝑁 . The complete 

log-likelihood function can be written as 

𝑙(𝑓(𝚯; {𝐗𝑚 , 𝐙𝑚 , 𝐇𝑚 }𝑚=1
𝑀 , 𝒔)) = ∑ log(𝑓(𝐗𝑚 , 𝐙𝑚|𝐇𝑚; 𝚯1))

𝑀1
𝑚=1 + ∑ log(𝑓(𝐗𝑚 , 𝐙𝑚|𝐇𝑚; 𝚯2))

𝑀1+𝑀2
𝑚=𝑀1+1

  

                                      +∑ log(𝑓(𝐇𝑚|𝒔;𝚯3)) +
𝑀
𝑚=1 log(𝑓(𝒔; 𝚯4)).                                           (2.6) 

After adding two group lasso penalties, the model estimation becomes an optimization 

problem as follows:  

min
𝚯
𝑙(𝚯) = −𝑙(𝑓(𝚯; {𝐗𝑚, 𝐙𝑚, 𝐇𝑚 }𝑚=1

𝑀 , 𝒔)) + 𝜆1∑ ∑ ‖𝒍𝑝
(𝑚)‖

2

𝑃
𝑝=1

𝑀
𝑚=1 +

                                                        𝜆2∑  ‖𝐮(𝑚)‖
2

 𝑀
𝑚=1 .                                              (2.7) 

where 𝒍𝑝
(𝑚)

 is the transpose of the 𝑝-th row of the loading matrix 𝐋(𝑚)  and 𝐮(𝑚)  is a 

column vector consisting of all the elements in the matrix 𝐔(𝑚).  
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2.4 Model Estimation 

2.4.1 Expectation-Maximization (EM) framework 

An Expectation-Maximization (EM) framework (Dempster et al., 1977) is adopted 

for model estimation due to the presence of unobserved latent factors, e.g.,  𝜼𝑖
(𝑚)

, and latent 

cluster membership, e.g., 𝒔𝑖, which is an iterative algorithm between E-steps and M-steps. 

Specifically, in the 𝑗-th iteration of the EM, the E-step needs to evaluate the expectation of 

𝑙(𝚯) in (2.7) with respect to the conditional distribution of latent variables {𝐇𝑚 }𝑚=1
𝑀  and 

𝐬 given observed data {𝐗𝑚}𝑚=1
𝑀  and 𝚯(𝑗−1), i.e.,  

𝑄(𝚯;𝚯(𝑗−1)) ≜ 𝐸{𝐇𝑚 }𝑚=1𝑀 ,𝒔|{𝐗𝑚}𝑚=1
𝑀 ; 𝚯(𝑗−1) {𝑙(𝚯; {𝐗𝑚, 𝐇𝑚 }𝑚=1

𝑀 , 𝒔)}.        (2.8) 

Following Bayes’ Theorem, (2.8) can be rewritten as the sum of four separate expectation 

terms as follows:   

𝑄(𝚯;𝚯(𝑗−1)) =

 𝐸{𝐇𝑚 }𝑚=1𝑀 ,𝒔|{𝐗𝑚}𝑚=1
𝑀 ; 𝚯(𝑗−1)

{
 
 

 
 −∑ log(𝑓(𝐗𝑚|𝐇𝑚; 𝚯1𝑚))

𝑀1
𝑚=1 + 𝜆1 ∑ ∑ ‖𝒍𝑝

(𝑚)‖
2

𝑃
𝑝=1

𝑀1
𝑚=1

−∑ log(𝑓(𝐗𝑚|𝐇𝑚; 𝚯2𝑚))
𝑀1+𝑀2
𝑚=𝑀1+1

+ 𝜆1 ∑ ∑ ‖𝒍𝑝
(𝑚)‖

2

𝑃
𝑝=1

𝑀1+𝑀2
𝑚=𝑀1+1

−∑ log(𝑓(𝐇𝑚|𝒔;𝚯3𝑚))
𝑀
𝑚=1 + 𝜆2 ∑  ‖𝐮(𝑚)‖

2
 𝑀

𝑚=1

− log(𝑓(𝒔; 𝚯4)) }
 
 

 
 

.            (2.9) 

The M-step aims to maximize the expectation in (2.9) that can be further separated into 

four convex functions in which each depends on a separate subset of parameters in 𝚯:  

𝑄(𝚯;𝚯(𝑗−1)) = 𝜑1 ({𝐋
(𝑚), 𝐁(𝑚),𝚿(𝑚)}

𝑚=1

𝑀1
)

+ 𝜑2 ({{𝜶𝑐
(𝑚)
}
𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚)}
𝑚=𝑀1+1

𝑀1+𝑀2

) 

                                                     +𝜑3 ({{𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘)}

𝑘=1

𝐾
}
𝑚=1

𝑀

) + 𝜑4(𝒘),                    (2.10) 
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where 𝜑1(∙) , 𝜑2(∙) , 𝜑3(∙) , and 𝜑4(∙)  can be minimized as four separate optimization 

problems. 

However, the traditional EM algorithm does not suffice in estimating the proposed 

M2-SEM with significant challenges in conducting both the E-step and M-Step. In the E-

step, the expectation in 𝜑2(∙) is intractable and needs to be first approximated with the 

numerical optimization method. This is because the likelihood function 𝑓(𝐗𝑚|𝐇𝑚; 𝚯) 

follows the multinominal distributions for categorical modalities 𝐗𝑚 , 𝑚 = 𝑀1 +

1,… ,𝑀1 +𝑀2, and thus its conditional expectation cannot be explicitly derived as the 

likelihood function with Gaussian assumption in 𝜑1(∙). To provide a traceable solution, 

this chapter proposes to use the GH quadrature (Ehrich S, 2002) to approximate the implicit 

integral in (2.10). Compared with other methods such as Monte Carlo EM, GH is more 

computationally efficient, especially for high-dimensional data. In the M-step, the 

optimization problem in (2.10) is non-smooth and conventional optimization methods are 

computationally costly particularly in handing large-scale data. The conventional solvers 

such as Newton-type algorithm (Dennis et al., 1983; Schnabel et al., 1985), Nesterov’s 

method (Liu et al., 2009), and Block Coordinate Descent algorithm (Hildreth 1957; Warga 

1963) are time-consuming. To provide an efficient estimation approach, this chapter 

proposes to use the Majorization Maximization (MM) algorithm (Heiser, 1995; Sun et al. 

2016) known to be 5-10 times faster empirically. 

2.4.2 E-step Enabled by Gauss-Hermite Approximation 

In the 𝑗th iteration, the E-step derives the four expectation terms in (2.10), each of 

which depends on a subset of parameters in 𝚯 = {𝚯1, 𝚯2, 𝚯3, 𝚯4}. After dropping terms 

not consisting of parameters to be estimated, the four terms can be written as   



24 

 

   𝜑1(𝚯1) = ∑ 𝜑1𝑚(𝐋
(𝑚), 𝐁(𝑚), 𝚿(𝑚))

𝑀1
𝑚=1 ;                      (2.11) 

𝜑2(𝚯2) = ∑ 𝜑2𝑚 ({𝜶𝑐
(𝑚)}

𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚))𝑀1+𝑀2
𝑚=𝑀1+1

;      (2.12) 

𝜑3(𝚯3) = ∑ 𝜑3𝑚 ({𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘)}

𝑘=1

𝐾
)𝑀

𝑚=1 ;                (2.13) 

          𝜑
4
(𝚯4) = −∑ ∑ log(𝑤𝑘) 𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖

(1), ⋯ 𝒙𝑖
(𝑀);  𝚯̂(𝑗−1))𝐾

𝑘=1
𝑁
𝑖=1 .           (2.14) 

We have  

𝜑1𝑚(𝐋
(𝑚), 𝐁(𝑚),𝚿(𝑚)) =

−∑

{
 
 

 
 

1

2
log|𝚿(𝑚)|

+
1

2
(𝒙𝑖

(𝑚) − 𝐿(𝑚)𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚); 𝚯̂(𝑗−1)) − 𝐵(𝑚)𝒛𝑖
(𝑚)
)
𝑇
𝚿(𝑚)−1(𝒙𝑖

(𝑚) − 𝐿(𝑚)𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚); 𝚯̂(𝑗−1)) − 𝐵(𝑚)𝒛𝑖
(𝑚)
)

+
1

2
𝑡𝑟 (𝐿(𝑚)

𝑇
𝚿(𝑚)−1𝐿(𝑚) (𝐸 (𝜼𝑖

(𝑚)𝜼𝑖
(𝑚)𝑇|𝒙𝑖

(𝑚); 𝚯̂(𝑗−1)) − 𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚); 𝚯̂(𝑗−1))𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚); 𝚯̂(𝑗−1))
𝑇
))

}
 
 

 
 

𝑁
𝑖=1 +

                                                                                                                  𝜆1∑ ‖𝒍𝑝
(𝑚)
‖
2

𝑃
𝑝=1 ;                 (2.15) 

𝜑2𝑚 ({𝜶𝑐
(𝑚)}

𝑐=1

𝐶−1
, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚)) = 

−∑ ∑ 𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖
(𝑚)
;  𝚯̂(𝑗−1))∑ ∫(𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝

(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚))𝑓(𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗)))𝑑𝜼𝑖
(𝑚)𝑃

𝑝=1
𝐾
𝑘=1

𝑁
𝑖=1 + 𝜆1∑ ‖𝒍𝑝

(𝑚)
‖
2

𝑃
𝑝=1 ;    (2.16)                      

𝜑3𝑚 ({𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘)}

𝑘=1

𝐾
) = 

−∑ ∑ ∑

{
 
 

 
 

1

2
log|𝚺(𝑚,𝑘)|

+
1

2
(𝝆̃𝑚,𝑘(𝒙𝑖

(𝑚)
) − 𝝁(𝑚,𝑘))

𝑇
𝚺(𝑚,𝑘)

−1
(𝝆̃𝑚,𝑘(𝒙𝑖

(𝑚)
) − 𝝁(𝑚,𝑘))

+
1

2
𝑡𝑟 (𝚺(𝑚,𝑘)

−1
(𝚼̃𝑚.𝑘 + 𝝆̃𝑚,𝑘(𝒙𝑖

(𝑚)
)
𝑻
𝝆̃𝑚,𝑘(𝒙𝑖

(𝑚)
)))

}
 
 

 
 

𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖
(1),⋯𝒙𝑖

(𝑀);  𝚯̂(𝑗−1))𝐾
𝑘=1

𝑀
𝑚=1

𝑁
𝑖=1 +

                                                                                                            𝜆2∑  ‖𝐮(𝑚)‖
2

 𝑀
𝑚=1 .             (2.17) 

where 𝚼̃𝑚.𝑘 = (𝐿
(𝑚)𝑇

𝚿̃
(𝑚)−1

𝐿
(𝑚)

+ 𝚺̃(𝑚,𝑘)
−1
)
−1

and 𝝆̃𝑚,𝑘(𝒙𝑖
(𝑚)) = (𝐿

(𝑚)𝑇
𝚿̃
(𝑚)−1

𝐿
(𝑚)

+

𝚺̃(𝑚,𝑘)
−1
)
−1

(𝐿
(𝑚)𝑇

𝚿̃
(𝑚)−1

𝒙𝑖
(𝑚)

+ 𝚺̃(𝑚,𝑘)
−1
𝝁(𝑚,𝑘)). While the derivation of 𝜑1(∙), 𝜑3(∙), and 

𝜑4(∙) is relatively straightforward and more details can be found in Appendix A, 𝜑2(∙) 

cannot be analytically derived because it contains a few inexplicit terms, i.e.,  

𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖
(𝑚)
;  𝚯̂(𝑗−1))  and ∫(𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝

(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚)) 𝑓(𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 =
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1; 𝚯̂(𝑗−1))) 𝑑𝜼𝑖
(𝑚)

 in (2.16) that do not have closed-forms. Fortunately, we have derived 

Propositions 2.1-2.3 below to approximate the inexplicit terms with the GH method to 

provide a closed-form formulation of (2.12) in the following two steps. First, we introduce 

the GH approximation in Definition 2.1 followed by a discussion of the approximation 

error in Proposition 2.1. GH quadrature is a widely used tool in numerical optimization to 

approximate the integral in the form of ∫
∞

−∞
exp{−𝑧2}𝑔(𝑧)𝑑𝑧, in which 𝑔(𝑧) is a function 

of 𝑧 and is infinitely differentiable w.r.t 𝑧 (Sauer and Xu, 1995; Davis and Rabinowitz, 

2007). The univariate GH quadrature can be generated to approximate the multivariate 

integrals, i.e., ∫
ℝ𝑄
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑔(𝒛)𝑑𝒛 , where 𝒛  is a Q-dimensional vector and 𝑔  is a 

function of 𝒛, as shown in Definition 2.1. We also have proved the GH approximation error 

will reduce to zero with sufficient number of notes in Proposition 2.1. Second, we employ 

the multivariate GH quadrature to approximate the two non-analytical terms in (2.12). 

Since this approximation is not trivial, we derived Propositions 2.2 and 2.3 to describe how 

each of the terms is approximated by GH in detail.  

Definition 2.1 (GH approximation). Given vector 𝒛 with rank(𝒛) = 𝑄, and function 𝑔 ∈

ℂ2𝑇: ℝ𝑄 → ℝ by applying Hermite interpolation , we have  

 ∫
𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑔(𝒛)𝑑𝒛 ≈ ∑𝑇𝑡1=1 ⋯∑𝑇𝑡𝑄=1 𝜔𝑡1⋯𝜔𝑡𝑄𝑔(𝒛𝑡)                                 (2.18) 

where 𝑺 ∈ ℝ𝑄 is the intergration set, 𝒛𝑡 = (𝑧𝑡1 , ⋯ , 𝑧𝑡𝑄)
𝑇 and 𝑧𝑡𝑞are the roots of Hermite 

polynomial of order T, 𝐻𝑇(𝑥) = (−1)
𝑇𝑒𝑥

2 𝑑𝑇

𝑑𝑥𝑇
𝑒−𝑥

2
  for 𝑡𝑞 ∈ {1,⋯ , 𝑇} and 𝑞 ∈ {1,⋯ , 𝑄}. 

The weight, 𝜔𝑡𝑞, is given by 𝜔𝑡𝑞 =
2𝑇+1𝑇!√𝜋

[𝐻𝑇+1(𝑧𝑡𝑞)]
2.    
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Proposition 2.1 (The GH approximate error is bounded). If the integration set 𝑺  in 

Definition 2.1 is closed, the GH approximation error, determined by 
𝑇!√𝜋

2𝑇(2𝑇)!
𝑔(2𝑇)(𝜉) ,  

reduces to zero for a sufficiently large T.  

(Due to the limitation of space, the detailed proof is listed in Appendix B.) 

Proposition 2.2. The non-analytical term 𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖
(𝑚)
;  𝚯̂(𝑗))  in (2.16) can be 

analytically approximated by GH Quadrature, i.e.,  

𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖
(𝑚)
;  𝚯̂(𝑗)) ≜ 𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖

(𝑚)
;  𝚯̂(𝑗)) =

𝑓̃(𝒙𝑖
(𝑚)

|𝑠𝑖𝑘=1; 𝚯̂
(𝑗))𝑓(𝑠𝑖𝑘=1; 𝚯̂

(𝑗))

∑ 𝑓̃(𝒙
𝑖
(𝑚)

|𝑠𝑖𝑘=1; 𝚯̂
(𝑗))𝑓(𝑠𝑖𝑘=1; 𝚯̂

(𝑗))𝐾
𝑘=1

,           (2.19) 

where 𝑓(𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂(𝑗)) = (𝜋)−𝑄/2∑ …𝑇

𝑡1=1
∑ 𝑤𝑡1 …𝑤𝑡𝑄𝑓 (𝒙𝑖

(𝑚)
|√2𝚺(𝑚,𝑘)

1

2𝜼̃
𝑖,𝑡

(𝑚)
+ 𝝁(𝑚,𝐾);  𝚯̂(𝑗))𝑇

𝑡𝑄=1
 

with {𝑤𝑡1 , … , 𝑤𝑡𝑄} and𝜼𝑖
(𝑚)

= √2𝚺(𝑚,𝑘)
1

2𝜼̃𝑖
(𝑚)

+ 𝝁(𝑚,𝐾), 𝜼̃
𝑖,𝑡

(𝑚)
= (𝜂̃

𝑖,𝑡1

(𝑚),⋯ , 𝜂̃
𝑖,𝑡𝑄

(𝑚))
𝑇
representing 

the weights and polynomial roots of GH approximation in Definition 2.1. 

(Due to the limitation of space, the detailed proof is listed in Appendix C.) 

Proposition 2.3. The non-analytical term ∫ (𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝
(𝑚)
|𝜼; 𝚯2𝑚)) 𝑓(𝜼|𝑠𝑖𝑘 =

⬚

𝜼

1; 𝚯̂(𝑗))) 𝑑𝜼 in (2.16) can be analytically approximated by GH Quadrature, i.e.,  

∫ (𝑙𝑜𝑔 (𝑓 (𝒙𝑖𝑝
(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚)) 𝑓 (𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗)))𝑑𝜼
⬚

𝜼

 

                    ≈ (𝜋)−𝑄/2∑𝑇𝑡1=1 ⋯∑
𝑇
𝑡𝑄=1

𝜔𝑡1⋯𝜔𝑡𝑄𝑙𝑜𝑔 (𝑓 (𝒙𝑖𝑝
(𝑚)
|√2𝚺(𝑚,𝑘)

1

2𝜼̃𝑖,𝑡
(𝑚)

+ 𝝁(𝑚,𝐾);  𝚯2𝑚))         (2.20) 
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where  𝜼𝑖
(𝑚)

= √2𝚺(𝑚,𝑘)
1

2𝜼̃𝑖
(𝑚)

+ 𝝁(𝑚,𝐾) , and  𝜼̃
𝑖,𝑡

(𝑚) = (𝜂̃
𝑖,𝑡1

(𝑚),⋯ , 𝜂̃
𝑖,𝑡𝑄

(𝑚)
)  are the roots of the 

Hermite polynomial of order 𝑇 , 𝑇  is the number of quadrature points of 𝜼𝑖,𝑡𝑞
(𝑚) , and the 

weights are given by 𝜔𝑡𝑞 =
2𝑇+1T!√𝜋

[𝐻𝑇+1(𝜂̃𝑖,𝑡𝑞
(𝑚)
)]2
.   

(Due to the limitation of space, the detailed proof is listed in Appendix D.) 

 Based on Propositions 2.2 and 2.3, the implicit terms in (2.16) can be replaced by 

their GH Quadrature and the objective function in (2.12) can be rewritten as  

𝜑2(𝚯2) ≈ ∑ 𝜑̃2𝑚 ({𝜶𝑐
(𝑚)}

𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚))𝑀1+𝑀2
𝑚=𝑀1+1

,    (2.21) 

where 

𝜑̃2𝑚 ({𝜶𝑐
(𝑚)}

𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚), 𝚿(𝑚)) =

                ∑ {
−∑ ∑ 𝑓̃(𝑠

𝑖𝑘
= 1|𝒙

𝑖

(𝑚)
;  𝚯̂
(𝑗−1))(𝜋)−

𝑄

2 ∑𝑇

𝑡1=1
⋯∑𝑇

𝑡𝑄=1
𝜔
𝑡1
⋯ 𝜔

𝑡𝑄
𝑙𝑜𝑔(𝑓 (𝒙

𝑖𝑝

(𝑚)
|√2𝚺(𝑚,𝑘)

1

2
𝜼̃
𝑖,𝑡

(𝑚)
+ 𝝁

(𝑚,𝐾)
;  𝚯

2𝑚
))𝐾

𝑘=1

𝑁

𝑖=1

+𝜆
2
‖𝒍

𝑝

(𝑚)‖
2

}𝑃

𝑝=1
.   (2.22) 

2.4.3 M-step Integrated with Majorization-Minimization Algorithm 

In the 𝑗 th iteration, the subsequent M-step minimizes the expected objective 

function derived in the E-step by solving four separate optimization problems each of 

which depends on a subset of parameters in 𝚯 = {𝚯1, 𝚯2, 𝚯3, 𝚯4}. After dropping terms 

not consisting of parameters to be estimated, the four optimization problems can be written 

as   

{𝚯̂1𝑚
(𝑗)
= {𝐋̂(𝑚)

(𝑗)
, 𝐁̂(𝑚)

(𝑗)
, 𝚿̂(𝑚)(𝑗)}}

𝑚=1

𝑀1

= argmin
{𝚯1𝑚}𝑚=1

𝑀1

𝜑1𝑚(𝐋
(𝑚), 𝐁(𝑚), 𝚿(𝑚)) ;        (2.23) 

{𝚯̂2𝑚
(𝑗)
= {{𝜶̂𝑐

(𝑚)}
𝑐=1

𝐶−1

, 𝐋̂(𝑚)
(𝑗)
, 𝐁̂(𝑚)

(𝑗)
, 𝚿̂(𝑚)(𝑗)}}

𝑚=𝑀1+1

𝑀1+𝑀2

= argmin
𝚯2𝑚

∑ 𝜑̃2𝑚 ({𝜶̂𝑐
(𝑚)}

𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚))
𝑀1+𝑀2
𝑚=𝑀1+1

; (2.24) 
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{𝚯̂3𝑚
(𝑗)
= {𝝁̂(𝑚,𝑘)

(𝑗)
, 𝚺̂(𝑚,𝑘)

(𝑗)
}
𝑘=1

𝐾

}
𝑚=1

𝑀

 = argmin
𝚯3

∑ 𝜑3𝑚 ({𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘)}

𝑘=1

𝐾
)𝑀

𝑚=1 ;               (2.25) 

𝒘̂(𝑗) = argmin
𝚯4

𝜑̃4(𝒘).                                                      (2.26) 

The term in (2.26) can be analytically optimized while the three terms in (2.23-2.25) are 

non-smooth and require to be optimized by iterative algorithms. All the three objectives in 

(2.23-2.25) are shown to be jointly convex and thus can be minimized by the Block 

Coordinate Descent (BCD) algorithm. BCD sequentially minimizes the objective function 

in each block coordinate while the other coordinates are held fixed. Hereinafter, we take 

the term in (2.24) as an example to describe how each BCD iteration is conducted, and 

similar procedures are applicable to terms in (2.23) and (2.25).  

 The objective function in (2.24) is jointly convex with respect to its parameters, i.e., 

𝚯2 = {𝚯2𝑚}𝑚=𝑀1+1
𝑀1+𝑀2 = {{𝜶𝑐

(𝑚)
}
𝑐=1

𝐶−1

, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚)}
𝑚=𝑀1+1

𝑀1+𝑀2

, and thus can be optimized 

by the BCD algorithm. Since (2.24) has a constraint that 𝜶1
(𝑚)

≤ 𝜶2
(𝑚)

≤ ⋯ ≤  𝜶𝐶−1
(𝑚)

 for 

𝑚 ∈ {𝑀1 + 1,⋯ ,𝑀1 +𝑀2},  to get rid of its influence, we modify the objective function 

of (2.24) as  

𝜑̃2𝑚 ({𝜶𝑐
(𝑚)}

𝑐=1

𝐶−1
, 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚)) =

∑ {
−∑ ∑ 𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖

(𝑚); 𝚯̂(𝑗−1))(𝜋)−
𝑄

2 ∑𝑇𝑡1=1 ⋯∑𝑇𝑡𝑄=1 𝜔𝑡1⋯𝜔𝑡𝑄𝑙𝑜𝑔 (𝑓 (𝒙𝑖𝑝
(𝑚)|√2𝚺(𝑚,𝑘)

1

2𝜼̃𝑖,𝑡
(𝑚) + 𝝁(𝑚,𝐾);  𝚯2𝑚))

𝐾
𝑘=1

𝑁
𝑖=1

+𝜆2‖𝒍𝑝
(𝑚)
‖
2

}+𝑃
𝑝=1

𝕝 ({𝜶𝑐
(𝑚)}

𝑐=1

𝐶−1
), where 𝕝 ({𝜶𝑐

(𝑚)}
𝑐=1

𝐶−1

) = {0, if 𝜶1
(𝑚) ≤ 𝜶2

(𝑚) ≤ ⋯ ≤ 𝜶𝐶−1
(𝑚)

∞, else
. 

The new objective function represents an extended-value extension of the original 

objective function, as described in Chapter 3.1.2 of Boyd et al., 2004. This approach allows 

us to relax the convex constraint while ensuring that the new objective function remains 

convex. The most challenging coordinate block to optimize is the one involving non-

smooth penalty terms, i.e., features’ loading matrix on latent factors 𝐋(𝑚) . Note that 
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although covariates’ coefficient matrix 𝐁(𝑚) is not include in the group lasso penalty, it 

can be assigned into the same block as 𝐋(𝑚) for simplicity. Instead of traditional solvers of 

non-smooth convex optimization, this study proposes to adopt an efficient Majorization 

Maximization (MM) algorithm (Hunter & Lange, 2004; Mairal, 2015) to optimize the non-

smooth convex objective function in (2.24) with respect to {𝐋(𝑚), 𝐁(𝑚)}
𝑚=𝑀1+1

𝑀1+𝑀2
. The 

principle of MM is to successively find and minimize an upper bound of the complex 

objective function 𝜑(∙) as a majorizing surrogate, in which each upper bound is simple, 

locally tight and each minimization step of the upper bound can result in decrease of the 

objective function’s value. Depending on the property of the objective function, different 

surrogates can be adopted. Next, we present Theorem 2.1 (Hunter & Lange, 2004; Mairal, 

2015) and briefly discuss the convergence of the MM algorithm in estimating M2-SEM in 

this chapter. Based on Theorem 2.1, the objective function in (2.24) is differentiable and 

convex with respect to {𝐋(𝑚), 𝐁(𝑚)}
𝑚=𝑀1+1

𝑀1+𝑀2
 and its first-order derivative is Lipschitz 

continuous, the first-order surrogate function is sufficient to “majorize” the objective 

function in (2.24). Moreover, all the three non-smooth objectives in (2.23-2.25) are proven 

to satisfy the assumptions on differentiability, convexity, and Lipschitz continuity and 

therefore can be solved effectively by the MM algorithm with the first-order surrogate 

model. More details can be found in Proposition 2.4 below.   

Theorem 2.1 (Convergence of the MM algorithm) (Hunter & Lange, 2004; Mairal 2015). 

Assume the following optimization problem where 𝒍  denotes the parameters to be 

estimated and 𝐃 denotes the data:  

min
𝒍
𝜑(𝒍|𝐃) + 𝜆‖𝒍‖2 
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If the objective function 𝜑(𝒍|𝐃) is differentiable and convex with respect to 𝒍 and its first-

order derivative ∇𝜑(𝒍|𝐃) is Lipschitz continuous, the MM algorithm with the first-order 

surrogate function is guaranteed to achieve the Karush–Kuhn–Tucker (KKT) conditions 

upon convergence.  

(Due to the limitation of space, the detailed proof is listed in Appendix E.) 

Proposition 2.4. The smooth objective functions in (2.23-2.25) are jointly convex and have 

Lipschitz continuous gradients with respect to {𝐋(𝑚), 𝐁(𝑚) }  for 𝑚 = 1,… . ,𝑀1 , 

{𝐋(𝑚), 𝐁(𝑚) }  for 𝑚 = 𝑀1 + 1,… . ,𝑀1 +𝑀2 , and {𝝁(𝑚,𝑘)}
𝑘=1

𝐾
 for 𝑚 = 1,… . ,𝑀1 +𝑀2 , 

respectively.  

(Due to the limitation of space, the detailed proof is listed in Appendix F.) 

2.4.4 Gauss-Hermite Expectation-Majorization-Minimization (GH-

EMM) algorithm 

This chapter develops a novel GH-EMM algorithm for efficient estimation of the 

proposed M2-SEM. The GH-EMM iterates over E-step enabled by Gauss-Hermite 

Approximation to accommodate mixed-type data modalities and M-step integrated with 

the efficient MM algorithm as described in Chapter 2.4.2 and Chapter 2.4.3, respectively. 

This algorithm is summarized in Table 1 below. The performance of GH-EMM will be 

tested in simulation studies and then used in a real-world application in Chapters 2.5 and 

2.6, respectively.    
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Table 1: Major steps of the proposed GH-EMM algorithm for parameter estimation in 

M2-SEM 

At 𝑗-th iteration of GH-EMM: given {𝐗𝑚, 𝐙𝑚 }𝑚=1
𝑀  and 𝚯(𝑗−1) 

   E-step (Chapter 2.4.2):  Derive the expectation term 𝑄(𝚯;𝚯(𝑗−1)) in (2.10) 

• Derive the explicit terms 𝜑1(𝚯1), 𝜑3(𝚯3), and 𝜑4(𝚯4) in (2.11), (2.13), and 

(2.14) 

• Derive the non-explicit term 𝜑2(𝚯2)  in (2.12) with GH approximation (see 

Props 2.1-2.3) 

   M-step (Chapter 2.4.3): Update parameters 𝚯(𝑗)  by maximizing the derived 

expectation term 𝑄(𝚯;𝚯(𝑗−1)) 

• Update 𝚯̂1
(𝑗)

, 𝚯̂2
(𝑗)

, and 𝚯̂3
(𝑗)

by solving optimization problems in (2.23-2.25) 

using MM (see Theorem 2.1 & Prop 2.4) 

• Update 𝚯̂4
(𝑗)

 by solving the optimization problem in (2.26) resulting in an 

analytical estimate 

Go to the next iteration until it reaches convergence 

 The GH-EMM algorithm includes four hyperparameters that need to be tuned for 

the optimal model selection including two regularized parameters 𝜆1 and 𝜆2, number of 

clusters 𝐾, and number of latent factors 𝑄. The classic BIC criterion is adopted for model 

selection to balance the model fitness and complexity, and the model with lowest BIC is 

preferred. The BIC is formally defined as 𝐵𝐼𝐶 =  −2 log(𝐿) + 𝑙𝑜𝑔(𝑁) × 𝑣,  where 𝐿 is 

the maximized value of the likelihood function given the estimated parameters, 𝑁 is the 

sample size, and 𝑣 is the number of free parameters to be estimated by the model. This 

chapter adopts a 3-D grid search strategy for 𝜆1 , 𝜆2 , and the other two integer 
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hyperparameters. For efficient computing, parallel resources are used to perform the 

exhaustive search of the 3-D grid (Intel® Core™ i9-13900K Processor and 64 Gb memory). 

2.5 Simulation 

The application of the proposed method will be introduced in Chapter 2.6. Chapter 

2.5 uses the simulation data to validate the performance of the proposed method. Chapter 

2.5.1 introduces the simulation setup of five different experiments, i.e., Experiments 1-5, 

while Chapter 2.5.2 presents the clustering accuracy, and modality and feature selection 

accuracy of the proposed model in comparison with several benchmark advanced model-

based clustering algorithms including Rmixmod (Lebret et al., 2015), clustMD (McParland 

and Gormley, 2016), and VarSelLCM (Marbac et al., 2020). The details of the benchmarks 

can be found from the literature review in Chapter 2.2.   

2.5.1 Simulation Setup 

The simulation study includes five different experiments to test the model’s 

performance in different settings. Experiment 1 produces a dataset with a similar number 

of subjects and features to the real-world dataset to be discussed in Chapter 2.6. We first 

introduce the simulation setup of Experiment 1 in detail followed by a brief discussion on 

the simulation setup of Experiments 2-5.   

Experiment 1 includes 400 subjects from three clusters with relative percentages of 

30%, 40%, and 30% by assuming 𝑤1 = 0.3 , 𝑤2 = 0.4 , and 𝑤3 = 0.3 . Each modality 

includes 20 features with only 25% informative features, i.e., associated with non-zero 

loadings on latent factors. To demonstrate M2-SEM's performance of feature selection, 

sparsity is induced into the loading coefficients. Each modality has 20 features, among 

which only the first five features have non-zero loadings that are randomly generated from 
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uniform distributions by setting the loading matrix as  𝐇𝑚 = [
(𝐇𝑚

(1)
)
5×2

𝟎15×2
] for  𝑚 = 1, 2,… ,  𝑀1 +𝑀2. 

Each subject has a total of eight modalities with only four modalities being informative, 

i.e., contributing to cluster differentiation. Each of the four informative modalities depends 

on two latent factors, i.e., Q = 2, with cluster-specific parameter distributions as shown in 

Table 2. For ease of discussion, we assume that Modalities 1-4 and Modalities 5-8 are 

numerical and categorical modalities, respectively, among which Modalities 1 and 2 and 

Modalities 5 and 6 are informative modalities. Table 2 depicts the distributions of latent 

factors across three clusters for both informative modalities and non-informative 

modalities, which demonstrates how clusters can be differentiated by latent factors among 

informative modalities. As shown in Table 2, it is obvious that the three clusters are non-

separable in the latent factor space for non-informative modalities, i.e., 𝑚 = 3,4,6, and 7, 

while the three clusters are noticeably separable for the informative modalities, i.e., 𝑚 =1, 

2, 3, and 4. 

Table 2: Cluster-specific parameters in distributions of latent factors 

 Modality Cluster 1 Cluster 2 Cluster 3 

𝒖𝑚,1 𝚺𝑚,1 𝒖𝑚,2 𝚺𝑚,2 𝒖𝑚,3 𝚺𝑚,3 

Informative 

numerical 

modalities 

m=1 (
0.20
1.80

) (
0.25 −0.21
−0.21 0.37

) (
−1.50
−1.50

) (
0.25 −0.21
−0.21 0.37

) (
1.10
−1.50

) (
0.25 −0.21
−0.21 0.37

) 

m=2 (
1.55
−1.75

) (
0.23 0.15
0.15 0.3

) (
−1.15
1.75

) (
0.23 0.15
0.15 0.3

) (
1.75
1.75

) (
0.23 0.15
0.15 0.30

) 

Informative 

categorical 

modalities 

m=5 (
−1.59
 0.77

) (
0.17 0.08
0.08 0.14

) (
1.50
 0.16

) (
0.16 −0.08
−0.08 0.12

) (
−0.01
−1.15

) (
0.10 −0.01
−0.01 0.09

) 

m=6 (
0.96
−1.35

) (
0.12 −0.07
−0.07 0.17

) (
−1.15
1.54

) (
0.09 −0.06
−0.06 0.13

) (
1.11
1.37

) (
0.15 0.04
0.04 0.11

) 

Non-

informative 

modalities 

m=3,4,7,8 (
0
0
) (

1 0
0 1

) (
0
0
) (

1 0
0 1

) (
0
0
) (

1 0
0 1

) 

Considering Experiment 1 as the baseline setting, two scenarios are further 

designed to test the model’s performance as the number of features or number of modalities 

increases. The rest of the parameter settings are similar to those in Experiment 1. In the 
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first scenario, Experiment 1 includes 20 features for each modality, which is increased to 

40 and 80 in Experiments 2 and 3, respectively. Each modality contains only 25% 

informative features and 75% non-informative features. We can observe how the model’s 

performance, especially feature selection accuracy, varies as the number of features 

increases, by comparing Experiments 1, 2, and 3. In the second scenario, Experiments 4 

and 5 are designed by increasing the number of modalities from 8 (as set in Experiment 1) 

to 16 and 24 modalities, respectively, by adding noise modalities. We can observe how the 

model’s performance, especially modality selection accuracy, varies as the number of 

modalities increases by comparing Experiments 1, 4, and 5.  

2.5.2 Simulation results 

To test the robustness of the proposed model, 20 replicates are randomly generated 

based on the simulation settings in Chapter 2.5.1, and the proposed M2-SM is applied to 

each replicate. Table 3 summarizes the basic setup of the five experiments, as well as 

clustering accuracy and feature and modality selection accuracy averaged over all the 

replicates. Specifically, selection accuracy is evaluated by both sensitivity and specificity. 

Sensitivity is defined as the percentage of parameters estimated to be non-zero among 

parameters associated with all the informative features, while specificity is defined as the 

percentage of parameters estimated to be zero among parameters associated with the non-

informative features. Sensitivity and specificity for modality selection are defined in a 

similar way. As discussed in Chapter 2.3.2, if Modality 𝑚  is non-informative, the 

distributions of its latent factors are invariant across clusters. Given the identifiability 

constraints, it is equivalent to that 𝝁(𝑚,𝑘) = 𝟎𝑄×1 for 𝑘 = 1,… . , 𝐾 , i.e., 𝐔(𝑚) = 𝟎𝑄×𝐾 . 
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Therefore, if all the elements in 𝐔(𝑚) are estimated to be zero, Modality 𝑚 is considered 

being excluded from the model.   

Table 3 summarizes the simulation results of two different scenarios to test the 

model’s performance with an increased number of features per modality and an increased 

number of modalities, respectively. Experiment 1 achieves a satisfactory accuracy in 

modality selection with the sensitivity and specificity being (98.75 ±  5.59)%  and 

(97.50 ±  7.69)%, respectively. As the number of modalities increases from 8 to 16 and 

24, we can observe the expected decrease in modality selection accuracy reflected in 

specificities by comparing Experiments 1, 4, and 5. It is not unexpected to observe that the 

specificity decreases as more and more noise modalities are added to the dataset. Note that 

the relatively high standard deviations in selection accuracy are most likely attributed to a 

limited number of replicates. Additionally, Experiment 1 achieves (98.75 ± 6.11)% 

sensitivity and (77.00 ± 24.30)%  specificity in feature selection. As the number of 

features in each modality increases from 20 to 40 and 80, the proposed method maintains 

at least 98% and 77% in sensitivity and specificity, respectively, in Experiments 2 and 3. 
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Table 3: Simulation results of 20 replicates in Experiments 1-5 

Experi

ment 

Settings Clustering 

Accuracy 

(%) 

Modality selection Feature selection 

# 

Modal

ities 

# 

Feat

ures 

Sensitivity 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Scenario 1: Test the model with different # features 

1 8 20 97.23 ± 6.59 98.75 ± 5.59 97.50 ± 7.69 98.63 ± 6.11 77.00 ± 24.30 

2 8 40 100.00 ± 0.00 100.00 ± 0.00 90.00 ± 24.87 99.06 ± 1.96 79.20 ±  21.23 

3 8 80 98.20 ± 5.55 100.00 ± 0.00 83.75 ± 21.88 98.89 ± 1.84 81.56 ± 18.77 

Scenario 2: Test the model with different # modalities 

1 8 20 97.23 ± 6.59 98.75 ± 5.59 97.50 ± 7.69 98.63 ± 6.11 77.00 ± 24.30 

4 16 20 97.30 ± 6.61 100.00 ± 0.00 90.95 ± 19.82 98.55 ± 4.06 78.13 ± 22.72 

5 24 20 97.26 ± 6.60 97.50 ± 11.18 83.50 ± 30.18 98.19 ± 5.14 75.26 ± 25.78 

The proposed model achieves at least 97% clustering accuracy, which is robust to 

the number of features and the number of modalities across Experiments 1-5. Moreover, 

the proposed model is compared with a few competing methods that are advanced MBC 

methods in existing R packages such as Rmixmod, clustMD, and VarSelLCM. Simulated 

data in Experiment 1 is used for comparison. Since existing methods do not consider the 

multi-modal data structure, three combined datasets are created by combining all four 

numeric modalities, all four categorical modalities, and all eight modalities, respectively. 

As shown in Figure 2, among competing benchmarks, Rmixmod achieves the highest 

clustering accuracy across all the three combined datasets. In particular, Rmixmod’s 

clustering accuracy is (87.40 ± 3.94)% for the combined dataset with eight modalities over 

the 20 replicates, but it is still significantly less than that of the proposed method, which is 

(97.23 ± 6.59)%. 
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Figure 2: Comparison of clustering accuracy between the proposed method and 

benchmarks 

2.6 Application 

2.6.1 Data description and preprocessing 

The data used for this application is from a large public dataset collected in the 

ongoing Hispanic Community Health Study (HCHS). This study has been exempt from the 

requirement for approval by an Institutional Review Board (IRB), because it is a secondary 

analysis of de-identified data with an approved data use agreement. A total of 1,052 

subjects with 10 data modalities including four continuous and six categorical modalities 

were included in the analyses. To discover CM subgroups from HCHS data, this study 

includes subjects’ demographics such as age and gender as well as their sleep health, 

dietary information, physical activities, and mental health, which are characterized by nine 

CM-related data modalities including medical history, lab results, sleep monitoring data, 

neurocognitive measures, Alternative Healthy Eating Indices (AHEIs), HCHS 

Acculturation questions, Center for Epidemiologic Studies Depression Scales (CES-D), 
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State-Trait Anxiety Inventories (STAIs), Epworth Sleepiness Scales (ESS), and Women’s 

Health Initiative Insomnia Rating Scales (WHIIRSs).  

To examine the model’s performance in a real-world application, we preprocess the 

HCHS data. Although it is not feasible to test the clustering accuracy as the group truth of 

cluster membership is unknown, we plan to validate the model’s performance on sparse 

selection. However, the challenge is that many of the CM data modalities have no sparsity 

within each modality by design. That is, if one modality is considered significant, all its 

features are significant and none of the features can be excluded from clustering. The 

reason is that the most commonly used health questionnaires such as the CES-D, STAI, 

and WHIIRS are well-developed tools to jointly measure a health condition of interest 

using multiple individual questions. Such questionnaire tools have been designed and 

tested in standard procedures (Björgvinsson et al., 2013; Spielberger, 1983) so that all 

questions are relevant to the measured health condition but no individual question can 

dominate the overall measurement. Therefore, additional noise features are added to each 

modality and the enhanced HCHS data include a total of 178 features within 10 modalities, 

consisting of 10, 32, 16, 10, 20, 20, 20, 20, 20, and 10 features from medical history, lab 

results, sleep monitoring data, neurocognitive measures, AHEI, HCHS Acculturation 

questions, CES-D, STAI, ESS, and WHIIRS, respectively. In each modality, the first 50% 

of the features are original features from HCHS and the last 50% of the features are noise 

features that we add. 

2.6.2 Results and discussion of medical findings 

The proposed M2-SEM was applied to the enhanced HCHS data for CM subgroup 

discovery, adjusted for age and gender, and identified 3 clusters within the 1,052 subjects. 
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Although it is not feasible to examine precisely the selection accuracy of all the features 

due to the lack of ground truth, we did inspect the estimates of all the noise features in each 

modality which indicated that 89% of noise features were identified as noise and excluded 

from the clustering by the proposed method. Among the 10 modalities, medical history, 

lab results, neurocognitive measures, AHEI, HCHS Acculturation questions, ESS, and 

WHIIRS are excluded from clustering, in the presence of the other more important CM-

related modalities including sleep monitoring data, CES-D, and STAI.  For ease of 

discussion, we refer to the three identified clusters as Cluster 1-3 with 456, 449, and 147 

subjects in each cluster, respectively. To highlight the need to cluster multi-modal data, 

Figure 3 displays the cluster separation based on each individual modality and multi-

modalities, in which the multi-modal data result in much better cluster separation. Clusters 

1 and 2 differ significantly in depression and anxiety, not in sleep monitoring, whereas 

Cluster 3 differs significantly from the other two clusters in sleep monitoring.  
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Figure 3: Comparison of cluster separation between (a-c) single-modal data and (d) 

multi-modal data 

CES-D is a self-report measure of depression. The total score is calculated by 

finding the sum of 10 items and any score equal to or above 10 is considered depressed. 

Cluster 2 is the most depressed group with an average CES-D score of 12.4 and Cluster 1 

is considered not depressed with an average score of 7.0. To eliminate the potential gender 

bias in depression and anxiety measures, i.e., females tend to be associated with higher 

levels of depression and anxiety, a two-sample proportion test is conducted that indicates 

there is no significant difference in gender distribution between Clusters 1 and 2 (P-value 

= 0.1), likely due to the adjustment for gender that is automatically considered in the 

proposed M2-SEM. Moreover, it is worth noting that there is no significant difference in 

age across the three clusters as well (P-values ≥ 0.6) suggesting that these findings that 

differentiate the clusters are not attributable to age differences. Similarly, the anxiety 

modality also indicates that Cluster 2 is more anxious than Cluster 1, consistent with the 

depression modality. That is, Cluster 2 is more depressed and anxious than Cluster 1, 

whereas Cluster 3 is in between for both modalities of mental health. Sleep monitoring is 
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the gold standard for the diagnosis of sleep disorders and assessment of sleep health. There 

is no significant difference in any feature between Clusters 1 and 2 (P-values ≥ 0.2). In 

contrast, Cluster 3 differs significantly from Clusters 1 and 2 across all features except for 

the minimum heart rate. Specifically, Cluster 3 is associated with a higher 

Apnea/Hypopnea Index (3% desat), a lower minimum and mean SpO2, a lower percent 

time SpO2 < 90, a higher maximum and mean heart rate, and a higher total time spent in 

loud snoring (P-values < 0.001), compared with both Clusters 1 and 2.  It is likely that the 

increased heart rate in Cluster 3 may reflect the effects of apnea, in that at the end of apnea 

there is a marked increase in heart rate (Somers et al, 1995); The lower oxygen and loud 

snoring are very likely explanations for the worse sleep quality in Cluster 3 and for the 

faster heart rate as noted earlier. Therefore, it is not a surprise that the sparse selection of 

M2-SEM excludes only the dummy features and no real features are excluded from the 

clustering. In other words, almost all the features that we selected under the sleep 

monitoring modality play an important role in cluster identification. Overall, Cluster 3 has 

the worst clinical features as reflected in the sleep monitoring data compared with Clusters 

1 and 2. In summary, Cluster 1 can be considered as the “healthiest” baseline group, i.e., 

with the most positive mental health status and no major concerns regarding sleep 

monitoring data, against which Clusters 2 and 3 can be compared; Cluster 2 has 

significantly worse mental status reflected in depression and anxiety, and Cluster 3 has 

significantly worse sleep quality.  

Finally, we further validate the clinical relevance of the identified clusters by 

correlating the three clusters with several clinical characteristics not used for cluster 

identification. First, the Apnea/Hypopnea Index (4% desat), a clinical characteristic to 



42 

 

evaluate the severity of sleep disorders, is not considered in clustering and thus can be used 

to independently validate the clinical relevance of the identified clusters. Indeed, Cluster 3 

has an average Apnea/Hypopnea Index (4%) as high as 42 events per hour, considered as 

“severe sleep disorders”, but this average index is 12 events per hour for both Clusters 1 

and 2, considered as “mild sleep disorders”. There are abundant medical studies that 

suggest that sleep disorders and relevant features are independent risk factors for 

cardiovascular morbidity and mortality, constituting important aspects of cardiometabolic 

health. This further suggests that individuals in Cluster 3 have worse cardiometabolic 

health and might be at high risk of adverse health outcomes in later life, compared with 

individuals in Clusters 1-2. Accordingly, the Framingham Risk Score (FRS), a widely used 

clinical algorithm to estimate the 10-year cardiovascular risk of an individual, differs by 

Cluster. Cluster 1, the “healthiest” baseline group, is associated with the lowest FRS 33% 

among the three clusters; Cluster 2, the “worst” mental health group, and Cluster 3, the 

“worst” sleep disruption group, are associated with significantly higher FRSs of 45% and 

48%, respectively.   

2.7 Conclusion and Discussion 

With the increased availability of health data from large biobanks, EHR systems, 

wearable sensors, etc., substantial data heterogeneity presents a common phenomenon in 

multi-modal health data. As the domain knowledge of underlying mechanisms in the 

medical field is often too scarce to explicitly articulate the patient-to-patient similarities 

and dissimilarities, data-driven clustering methods have been receiving increasing attention 

to subtype discovery from multi-modal heterogeneous health data to delineate 

heterogeneity and facilitate knowledge discovery. Among existing clustering approaches, 
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model-based clustering is a popular choice due to its statistical rigor in model inference 

and selection, but most models along this line do not consider the existence of latent factors 

within each data modality or take multi-modal data structure into account. Structural 

equation modeling encompasses a set of statistical models to analyze the interconnected 

relationship of multi-modal data and features, but this type of model relies heavily on the 

normality assumption that is required by model-based clustering models. The reason is 

when employed for clustering purposes, structural equation modeling assumes the cluster 

membership as a latent factor that follows a multinomial distribution, which therefore 

obviously violates the normality assumption. Although there are few studies that can 

accommodate categorical variables in structural equation modeling, most of them do not 

consider sparsity in model estimation and are computationally expensive in modeling high-

dimensional data.  

This chapter develops a novel Multi-modal Mixed-type Structural Equation Model 

(M2-SEM) with structured sparsity for precise subgroup discovery from multi-modal, 

mixed-type, high-dimensional data. The proposed M2-SEM results in a complex objective 

function with both observed data and latent variables that motivates the development of a 

novel GH-enabled Expectation Majorization Minimization algorithm (GH-EMM) for 

model estimation. The GH-EMM algorithm adopts the conventional EM framework but 

innovates as follows: instead of the Monte-Carlo (MC) EM algorithm, an efficient 

numerical optimal approach, i.e., Gauss-Hermite (GH) Quadrature, is leveraged to 

approximate the non-analytical terms in the expectation terms of the E-steps to provide a 

tractable, computationally efficient solution; the GH-enabled analytical terms are proven 

to have good computational properties such as Lipschitz-continuity and concavity, which 
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can be efficiently solved by the Majorization Minimization (MM) algorithm that is 5~10 

times faster than conventional optimizers. The proposed M2-SEM and GH-EMM are 

examined in simulation studies under different settings and demonstrate robust accuracy in 

modality selection and model selection. Compared with several competing benchmarks, 

the proposed method achieves the highest clustering accuracy as well.    

 The proposed method is applied to a real-world dataset for CM subgroup discovery 

from multi-modal mixed-type CM data including 1,052 subjects with four continuous 

modalities including lab results, sleep monitoring data, and neurocognitive measures and 

six categorical modalities including medical history, AHEI, HCHS acculturation survey, 

CES-D, STAI, ESS, and WHIRS. The selected modalities that contribute to cluster 

differentiation the most are sleep monitoring data, CES-D, and STAI, from which three 

clusters are identified. Clusters 1 and 2 significantly differ in depression and anxiety, not 

in sleep characteristics, whereas Cluster 3 is significantly different from the other two 

clusters in sleep characteristics. Compared with single-modal data, multi-modal data 

clearly results in much better cluster separation highlighting the importance of clustering 

multi-modal data. Moreover, Cluster 1 can be considered as the “healthiest” baseline group, 

i.e., with the most positive mental health status and no adverse features in sleep monitoring 

data, against which Clusters 2 and 3 can be compared; Cluster 2 has significantly worse 

mental status reflected in depression and anxiety and Cluster 3 has significantly worse sleep 

quality. Last but not least, the clinical relevance of the clusters identified by the proposed 

M2-SEM is validated using two independent clinical characteristics. The findings of the 

proposed model are consistent with medical intuition and domain knowledge, e.g., the 
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commonly-used Framingham Risk Scores, that shed light on precise CM risk stratification 

and CM health promotion in the population.   
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Chapter 3 Federated Function-on-Function Regression with an 

Efficient Gradient Boosting Algorithm for Privacy-Preserving 

Telemedicine 

3.1 Introduction 

Federated Learning (FL) is an emerging computing paradigm to collaboratively 

train Machine Learning (ML) models by leveraging multi-source data without data 

exchange, thus removing many barriers to data sharing. FL is motivated by the growing 

need for data sharing and privacy-preserving of ML models. In the era of big data, the past 

decades have witnessed ML methods' success and rapid growth in modern society. Big data 

is required to empower ML methods at a large scale, but such data is often hard to obtain 

due to data privacy and ownership concerns. In the healthcare system, while one ML model 

that generalizes across heterogeneous, unharmonized Electronic Healthcare Record (EHR) 

data of different hospitals is desirable to facilitate clinical decision-making at the 

population level, it is challenging to combine the datasets across hospitals because health 

data is highly sensitive, and its usage is tightly regulated. The same phenomenon 

commonly exists in manufacturing systems, in which, for example, each company may 

collect and store its sensory data in the local server during production to monitor, inspect, 

and control the quality of its products. Such commercial data may be collected with a cost 

and thus poses challenges in data sharing with privacy and data ownership hurdles. FL is 

known to maintain the governance of data locally with only model parameters shared to 

enable collaboratively learning across multiple datasets, alleviating the privacy concern, 

and thus has already shown great promise in a variety of applications.  
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The function-on-function regression aims at predicting a functional response from 

other functional variables and receives more and more attention in functional data analysis. 

Functional data also referred to as time-series data, is a commonly encountered type of data 

in many research fields, such as healthcare, engineering, and economics. Take the health 

telemonitoring of Obstructive Sleep Apnea (OSA) as an example. OSA is a prevalent 

cardiac syndrome characterized by abnormal respiratory patterns during sleep, and its 

diagnosis involves an overnight recording of patients' multi-channel bio-signals, such as 

ECG and EEG, via wearable sensors (Alramadeen et al., 2023). The long-term recordings 

will later be manually scrutinized and scored by certified medical technicians to derive the 

frequency of adverse respiratory events, which is a labor-intensive procedure. Therefore, 

it is of clinical interest for a prediction model that automatically predicts the frequency of 

adverse respiratory events that occur in a certain time interval, i.e., epoch, from the bio-

signals features extracted within the same epoch. Although the function-on-function 

regression model that can make a prediction of the functional response, e.g., frequency of 

adverse respiratory events in all epochs, is a natural choice for such a prediction model, 

there is no existing studies on FL of the function-on-function regression.  

The major challenge of "meaningful" implementation of FL for any ML model is 

how to guarantee that the “federated model” can achieve a satisfactory performance 

comparable to the “global model” trained using the combined data as well as superior to 

each “local model” that can only see and use its own local data. Most existing FL methods 

focus on the empirical comparison of model performance between “federated model”, 

“global model”, and “local models” in comparative simulation studies, while the theoretical 

guarantee of the FL methods' performance is challenging and limited. This project 



48 

 

contributes the first-of-its-kind federated Gradient Boosting algorithm with the Least 

Squares Approximation (fed-GB-LSA) for efficient, privacy-preserving federated learning 

of the function-on-function regression. The proposed fed-GB-LSA will be tested in 

simulation studies and applied in a real-world dataset for OSA telemedicine.  

The original contributions of the proposed fed-GB-LSA are summarized as follows. 

1. The GB-based algorithm is flexible in the sense that it allows the inclusion and sparse 

selection of multivariate functional and non-functional features in the function-on-function 

regression prediction, which is not straightforward in functional regression. 2. The 

parameter estimation by the GB algorithm results in separate sub-optimization problems 

with explicitly analytical solutions for each of the features, providing a “computationally 

efficient” estimation algorithm for the function-on-function regression. 3. The LSA-

enabled fed-GB provides a “one-shot” approach for FL that is “communicationally- and 

statistically- efficient”. That is, the LSA-enabled aggregator is proven to enjoy the same 

asymptotic normality as the global estimator, offering theoretical guarantees to the 

performance of the federated model with a “one-shot” update strategy.  

The rest of this chapter is organized as follows. Chapter 3.2 reviews the relevant 

work; Chapter 3.3 presents the model formulation of the function-on-function regression 

model; Chapter 3.4 introduces the federated model estimation based on fed-GB-LSA; 

Chapter 3.5 presents the simulation studies to evaluate the empirical performance of the 

proposed method; Chapter 3.6 applies the proposed method for health telemonitoring of 

OSA; Chapter 3.7 concludes this chapter.   
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3.2 Literature Review 

Functional Data Analysis (FDA) encompasses a collection of statistical models 

increasingly being used to better analyze, model, and predict functional data, also 

commonly referred to as time-series data (Wang et al., 2016). Among a variety of FDA 

methods, functional regression is of great interest due to its flexibility and capacity in 

statistical modeling and predictive analytics inherited from traditional regression models. 

Depending on whether the responses or predictors are functional data or non-functional 

scalar data, there are scalar-on-function (Du and Wang, 2014; Cardot and Sarda, 2005; 

Müller and Yao, 2008; Wang et al., 2017), function-on-scalar (Zhang et al., 2022), or 

function-on-function regression (Chiou et al., 2016; Ivanescu et al., 2015; Luo and Qi, 2017; 

Imaizumi and Kato, 2018; Joseph et al., 2021). The function-on-function regression 

represents functional data with basis function systems and is often integrated with 

numerical optimization for approximation, thus resulting in a large number of parameters 

in basis functions to be estimated as well as a large number of knots for approximation to 

be considered in model training. A clear obstacle towards scalable computing of the 

function-on-function regression is how to efficiently process and estimate such a high 

number of knots and parameters in the high-dimensional data setting.   

Boosting, which originated in the 1990s, is a data-driven model estimation 

approach that aggregates many weak learners, instead of a strong model, to get strong 

prediction results (Freund and Schapire, 1995). AdaBoost, the first well-known boosting 

algorithm, achieved outstanding binary classification results in its age (Freund and 

Schapire, 1995). The main idea of gradient boosting is sequentially adding new models by 

a gradient-descent-based algorithm to form an additive model (Friedman et al., 2000). 
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XGBoost, or eXtreme Gradient Boosting, (Chen et al., 2015) has demonstrated to be a 

reliable and efficient machine learning challenge solver and has been consistently placed 

among the top contenders in Kaggle competitions for a long time under various topics of 

data analysis tasks. Essentially, Boosting is a popular machine-learning technique, that 

focuses on improving the overall performance of model fitting by combining a collection 

of simple models (Friedman et al., 2000). By presenting boosting from a statistical point 

of view, Bühlmann and Hothorn (2007) extended the basic idea of boosting into a Gradient 

Boosting (GB) algorithm. GB trains model parameters by minimizing an empirical loss 

function without restrictions on the form of mathematical formulations or types of ML 

models, thus providing an efficient and flexible tool for model training (Hothorn et al., 

2014). 

Federated Learning (FL) has gained increasing attention due to the privacy 

concerns associated with the development of centralized learning in the era of big data. 

Unlike traditional centralized ML, FL, introduced by Google (McMahan et al., 2017; 

Konečný et al., 2016), enables knowledge sharing with a distributed training approach 

without data sharing, which allows individuals in different geographical locations to 

collaborate on developing ML models. Depending on data partitions across local servers, 

FL can be classified into horizontal Federated Learning (HFL), Vertical Federated 

Learning (VFL), and Federated Transfer Learning (FTL) (Yang et al., 2019). In HFL, the 

datasets of different local servers have the same feature space but with little to no 

intersection of sample space (McMahan et al., 2016); VFL comes in when the local servers 

are exposed to different feature spaces but with similar or the same sample space (Hardy 

et al., 2017); and FTL is a relatively rare architecture with a hybrid data partition in both 
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feature and sample spaces (Liu et al., 2020).  HFL is most common among all FL 

architectures and is also the focus of this study. Moreover, FL can be categorized into cross-

device and cross-silo FL based on the nature and scale of its participating local servers. 

Cross-device Federated Learning involves numerous small, distributed entities such as 

smartphones and wearable devices, with each entity holding a limited amount of data 

(Yang et al., 2019; Kairouz et al., 2021). This method hinges on the participation of a large 

number of these devices for successful training. On the other hand, cross-silo FL is 

characterized by its local servers, which are generally large organizations or corporations, 

such as hospitals and banks (Huang et al., 2022). This type of FL includes fewer local 

servers, but each server is heavily involved throughout the entire training process. The 

focus of this chapter is on cross-silo horizontal FL for privacy-preserving telemedicine, 

targeting various patient cohorts across different hospitals.  

There are several studies that adopted GB for efficient estimation of the function-

on-function regression (Brockhaus and Rügamer, 2016; Brockhaus et al., 2017). However, 

none of the studies has explored this problem in the FL setting. There is one study (Shen 

et al., 2022) that investigated the FL of the general GB algorithm, but it does not discuss 

the FL of the GB algorithm in the context of functional regression. Moreover, it used the 

Federated Averaging algorithm that consists of individual parameter update at each local 

server, followed by a model averaging update at the central server (Konečnỳ et al., 2016; 

McMahan et al., 2017). Although the Federated Averaging algorithm is the most 

commonly used method to obtain a global estimator by aggregating local estimators in FL, 

it requires multiple rounds of communication between the central server and local servers 

to refine the aggregated federated estimator thus being computationally and 
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communicationally expensive (Li et al., 2019; Yuan and Ma, 2020). Alternatively, the 

“one-shot” strategy requires one round of communication only. Despite the high efficiency, 

the “one-shot” approach might not achieve a satisfactory model performance in most FL 

studies. Wang and Leng (2007) proposed a Least Squares Approximation (LSA) method 

that can transfer many objective functions into their asymptotically equivalent least squares 

problems using the standard Taylor series expansion. The LSA method is naturally friendly 

for model estimation in FL in the sense that, when applied in the FL setting, the aggregated 

estimator by taking a weighted average of local estimators is guaranteed to be statistically 

as efficient as the global estimator, which requires only one-round of communication 

between the central and local servers, a.k.a., “one-shot” FL approach (Guha et al., 2019; 

Li et al., 2020; Zhu et al., 2021). However, no existing study has leveraged the LSA method 

for “one-shot” FL of the functional regression models.  

3.3 Model Formulation 

This subchapter introduces the model formulation of the function-on-function 

regression model with functional observations {𝒚, 𝐗} , in which 𝒚 =

{𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑁(𝑡)}
𝑇  and 𝐗 = {𝒙1, 𝒙2, ⋯ , 𝒙𝑁}

𝑇 where 𝒙𝑛 =

{𝑥𝑛1(𝑡),⋯ , 𝑥𝑛𝑝(𝑡),⋯ , 𝑥𝑛𝑃(𝑡)}
𝑇

for 𝑛 = 1,… ,𝑁 . 𝑁  denotes the number of observations 

and  𝑃 denotes the number of predictors. The sampling period is 𝑇 so that 𝑡 ∈ 𝑇. Note that 

the function-on-function regression and its variations have been studied in recent years 

(Chiou et al., 2016; Ivanescu et al., 2015; Luo and Qi, 2017; Imaizumi and Kato, 2018; 

Joseph et al., 2021). This subchapter aims to provide a brief introduction of its classic 

mathematical formulation (Ramsay and Silverman, 2002) to facilitate the later discussion 
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on the development of a novel fed-GB-LSA algorithm for privacy-preserving model 

estimation in Chapter 3.4.  

The function-on-function regression model extends the conventional linear 

regression by defining a bivariate coefficient function 𝛽𝑝(𝑠, 𝑡) for 𝑝 = 1,… , 𝑃. For a given 

subject 𝑛, the function-on-function regression model can be written as  

𝑦𝑛(𝑡) = ∑ ∫ 𝑥𝑛𝑝(𝑠)
⬚

𝑠∈𝑇
𝛽𝑝(𝑠, 𝑡)𝑑𝑠

𝑃
𝑝=1 + 𝜀𝑛(𝑡),      (3.1) 

where 𝛽𝑝(𝑠, 𝑡) is the bivariate coefficient function for the 𝑝-th functional predictor, and 

𝜀𝑛(𝑡)  is the random error function that follows a normal distribution. Similar to the 

conventional regression model, the intercept term in the function-on-function regression 

model (3.1) can be dropped after centering the functional response and predictors without 

loss of generality. 

 To approach the functional variables, the function-on-function regression 

introduces various basis systems such as Fourier, monomial, and B-Spline (Ramsay and 

Silverman, 2002). The basis representation results in a set of coefficients that are easy to 

estimate, and the appropriate choice of basis system can account for nearly any curve 

features in the functional variables. We assume the bivariate coefficient function 𝛽𝑝(𝑠, 𝑡)  

has a double expansion on one basis system 𝜽 with 𝐾1 functions and another basis system 

𝜼 with 𝐾2 functions, i.e., 𝛽𝑝(𝑠, 𝑡) = 𝜽(𝑠)𝑇𝐁𝑝𝜼(𝑡) in which 𝜽(𝑡) = (𝜃1(𝑡), … , 𝜃𝐾1(𝑡))
𝑇

, 

𝜼(𝑡) = (𝜂1(𝑡), … , 𝜂𝐾2(𝑡))
𝑇

, and 𝐁𝑝 ∈ 𝑹
𝐾1×𝐾2. After substituting the double expansion of 

𝛽𝑝(𝑠, 𝑡) into (3.1), the function-on-function regression model can be rewritten as 

𝑦𝑛(𝑡) = ∑ ∫ 𝑥𝑛𝑝(𝑠)
⬚

𝑠∈𝑇
𝜽(𝑠)𝑇𝑑𝑠𝑃

𝑝=1 𝐁𝑝𝜼(𝑡) + 𝜀(𝑡),            (3.2) 
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in which we define a 1 × 𝐾1  row vector 𝒛𝑛𝑝 = ∫ 𝑥𝑛𝑝(𝑠)
⬚

𝑠∈𝑇
𝜽(𝑠)𝑇𝑑𝑠  that can be pre-

calculated from the data of the 𝑝-th predictor and the selected basis functions. Specifically, 

let’s assume the predictors 𝐗 and response 𝒚 are collected simultaneously throughout the 

sampling period 𝑇 with a sampling interval of Δ. The sampling sequence throughout 𝑇 is 

{𝑡1, 𝑡2⋯ , 𝑡𝑖, ⋯𝑇}. The term 𝒛𝑛𝑝 can be approximated by its Riemann sum (Hughes-Hallett 

et al., 2020), i.e., 𝒛𝑛𝑝 = ∫ 𝑥𝑛𝑝(𝑠)
𝑇

𝑠=0
𝜽(𝑠)𝑇𝑑𝑠 ≈ Δ∑ 𝑥𝑛𝑝(𝑠𝑖)𝜽(𝑠𝑖)

𝑇
𝑖 . It is also noteworthy 

that the function-on-function regression model can accommodate both functional and non-

functional predictors. For example, if the 𝑝-th predictor is non-functional and takes a fixed 

value for 𝑛 = 1,… ,𝑁 , 𝑥𝑛𝑝(𝑠)  becomes a constant with respect to 𝑠 .  Therefore, the 

formulation in (3.2) allows us to adopt a simple and unified formulation for both functional 

and non-functional predictors. After replacing the integral in (3.2) with the computed 𝒛𝑛𝑝, 

the model can be rewritten as 

𝑦𝑛(𝑡) = ∑ ℎ𝑝(𝑡)
𝑃
𝑝=1 + 𝜀(𝑡),          (3.3) 

where ℎ𝑝(𝑡) = 𝒛𝑛𝑝𝐁𝑝𝜼(𝑡)  for 𝑝 ∈ {1,⋯ , 𝑃} . ℎ𝑝(𝑡) is defined as the “base learner” to 

facilitate the later discussion on using GB algorithm for model estimation. The formulation 

in (3.3) clearly reveals that the model estimation of the function-on-function regression can 

be achieved by selecting a sequence of appropriate “base learners” ℎ𝑝(𝑡) to estimate the 

functional response  𝑦𝑛(𝑡) with an additive form of the selected base learners. More details 

on estimating the model in (3.3) are provided in Chapter 3.4.  

3.4 A Novel fed-GB-LSA for Federated Model Estimation 

The privacy-preserving model estimation is achieved by a novel federated Gradient 

Boosting (GB) algorithm integrated with the Least Square Approximation (fed-GB-LSA). 
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The proposed fed-GB-LSA innovatively employs the GB algorithm for efficient estimation 

of the function-on-function regression in Chapter 3.4.1 and integrates the LSA to enable 

“one-shot’ federated learning of GB in Chapter 3.4.2.   

3.4.1 Gradient Boosting (GB) 

GB is a boosting-type ensemble method that uses a divide-and-conquer approach 

to optimize the loss function (Bühlmann and Hothorn, 2007; Hothorn et al., 2014). GB 

iteratively selects the best base learner from {ℎ1(∙),⋯ , ℎ𝑃(∙)} to update the model until 

reaching a pre-set maximal number of iterations 𝑞. Specifically, given prediction 𝑓(𝑡, 𝒛𝑛) 

where 𝒛𝑛 = {𝒛𝑛1, 𝒛𝑛2, ⋯ , 𝒛𝑛𝑃} and 𝑛 = 1,… ,𝑁 , GB minimizes the loss function 𝑙  over 

prediction function 𝑓. Compared with most boosting methods that are purely heuristic, the 

GB model results in an additive form of multiple simple models, e.g., ℎ1(∙),… , ℎ𝑝(∙), that 

fit the negative gradient of the loss function to minimize the loss function along the steepest 

gradient descent in each iteration. Moreover, GB considers the variable selection during 

the model fitting process without relying on heuristic stepwise variable selection or lasso-

type non-smooth penalties.  

We first briefly review the conventional GB (Bühlmann and Hothorn, 2007; 

Hothorn et al., 2014) and then derive how GB framework can be extended to estimate the 

function-on-function regression. By choosing the least square function as the loss function, 

we define the loss function as  𝑙(𝒚, 𝑓|X) = ∑ ∫ (𝑦𝑛(𝑡) − 𝑓(𝑡, 𝒛𝑛) )
2𝑑𝑡

⬚

𝑡∈𝑇
𝑁
𝑛=1 . Then, GB 

aims to solve the following optimization  

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑙(𝒚, 𝑓|X).                           (3.4) 
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The step 0 of GB initializes the estimation with offset values 𝑓[0], which is a vector of 

length 𝑁. Each element of 𝑓[0](𝑡) is a functional variable 𝑦̅(𝑡) =
1

𝑁
∑ 𝑦𝑛(𝑡)
𝑁
𝑛=1 .  

Next, we derive how to extend the conventional GB algorithm to efficiently 

estimate the function-on-function regression model in (3.3).  In the ω-th iteration, ω ∈

{1,⋯ , 𝑞}, GB first computes the negative gradient of risk function in (3.4) with respect to 

𝑓 , i.e., 𝒖(ω) ∈ 𝑅𝑁×1 = −
𝜕𝑙

𝜕𝑓
|
𝑓 =𝑓[ω−1] 

, and then fits each candidate base learner to the 

negative gradient 𝒖(ω) by solving the following optimization problems for 𝑝 = 1,… , 𝑃: 

𝐁̂𝑝
(ω) = argmin

𝐁𝑝

∑ ∫ (𝑢𝑛
(ω)(𝑡) − 𝒛𝑛𝑝𝐁𝑝𝜼(𝑡))

2

𝑑𝑡
⬚

𝑡∈𝑇
𝑁
𝑛=1 ,           (3.5) 

where 𝑢𝑛
(ω)(𝑡) is the 𝑛-th element in the negative gradient 𝒖(ω). The optimal solution of 

the problem in (3.5) can be used to derive the fitted base learner ĥ𝑝
(ω)(𝑡) = 𝒛𝑛𝑝𝐁̂𝑝

(ω)𝜼(𝑡) 

for 𝑝 ∈ {1,⋯ , 𝑃}. Among all the fitted base learners, GB selects the best base learner by 

minimizing the Residual Sum of Squares (RSSs) defined as    

𝑅𝑆𝑆𝑝 = ∑ ∫ (𝑢𝑛
(ω)(𝑡) − 𝒛𝑛𝑝𝐁̂𝑝

(ω)𝜼(𝑡))
2

𝑑𝑡
⬚

𝑡∈𝑇
𝑁
𝑛=1   for  𝑝 = 1,… , 𝑃.      (3.6) 

 Using the best base learner ℎ𝑝∗
(ω)

 with the minimal RSS, GB updates the model by 

𝑓(ω)(𝑡)  =  𝑓(ω−1)(𝑡)  + 𝜈ℎ𝑝∗
(ω)

, in which 𝜈  is the pre-set learning rate and ℎ𝑝∗
(ω) =

𝒛𝑛𝑝𝐁̂𝑝∗
(ω)𝜼(𝑡). The GB algorithm iterates until the stopping criterion, e.g., maximal number 

of iterations 𝑞, is reached.  

Last but not least, it is noteworthy that although the optimization problem in (3.5) 

seems complicatedly structured, its optimal solution can be derived as an analytical form 

as shown in Proposition 3.1 below. Therefore, in each GB iteration, all the base learners 
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can be efficiently fitted by analytical forms without the need for any other iterative 

optimizers, which contributes to the improvement of the computational efficiency of the 

GB algorithm. Next, we present Proposition 3.1 and its proof in detail.  

Proposition 3.1 (The optimization problem in (3.5) has an analytical form). Given 𝐁 ∈

𝑹𝐾1×𝐾2 , 𝐙 ∈ 𝑹𝑁×𝐾1, and two functional vectors 𝒖(𝑡) and 𝜼(𝑡), the problem in (3.5) results 

in a general optimization problem: 

𝐁∗ = argmin
𝐁

∫ ‖𝐮(t) − 𝐙𝐁𝛈(t)‖2dt
⬚

t∈T
,                          (3.7)      

Where 𝒖(𝑡) = (𝑢𝟏(𝑡),⋯ , 𝑢𝑁(𝑡))
𝑇

and 𝜼(𝑡) = (𝜂𝟏(𝑡), ⋯ , 𝜂𝑁(𝑡))
𝑇

. The optimal solution 

is  

𝑣𝑒𝑐(𝐁∗) = (𝐽𝜂𝜂⊗ (𝐙𝑇𝐙))
−1

𝑣𝑒𝑐 (𝐙𝑇 ∫ 𝒖(𝑡)𝜼𝑇(𝑡)𝑑𝑡
⬚

𝑡
),   (3.8) 

where 𝐽𝜂𝜂  = ∫ 𝜼(𝑡)𝜼𝑇(𝑡)d𝑡
⬚

𝑡∈𝑇
 . Note that 𝑣𝑒𝑐(∙) writes a matrix as a vector column wise. 

Proof: The loss function of the optimization problem can be written as  

𝑙 = ∫ ‖𝒖(𝑡) − 𝐙𝐁𝜼(𝑡)‖2𝑑𝑡
⬚

𝑡∈𝑇

= ∫ (𝒖(𝑡) − 𝐙𝐁𝜼(𝑡))
𝑇
(𝒖(𝑡) − 𝐙𝐁𝜼(𝑡))𝑑𝑡

⬚

𝑡∈𝑇

 

    =∫ 𝒖(𝑡)𝑇𝒖(𝑡)𝑑𝑡 + ∫ 𝜼(𝑡)𝑇𝐁𝑇𝐙𝑇𝐙𝐁𝜼(𝑡)𝑑𝑡 − 2∫ 𝒖(𝑡)𝑇𝐙𝐁𝜼(𝑡)𝑑𝑡 
⬚

𝑡∈𝑇
 

⬚

𝑡∈𝑇

⬚

𝑡∈𝑇
. 

In the loss function, the operations of summation and integration are interchangeable. 

Based on the property of matrix’s trace, for example, 𝑡𝑟𝑎𝑐𝑒(𝑨𝑩𝑪) = 𝑡𝑟𝑎𝑐𝑒(𝑪𝑨𝑩), we 

have  
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𝑙 = ∫ 𝒖(𝑡)𝑇𝒖(𝑡)𝑑𝑡
⬚

𝑡∈𝑇

+∫ 𝑡𝑟𝑎𝑐𝑒(𝜼(𝑡)𝑇𝐁𝑇𝐙𝑇)𝑑𝑡
⬚

𝑡∈𝑇

− 2∫ 𝑡𝑟𝑎𝑐𝑒(𝒖(𝑡)𝑇𝐙𝐁𝜼(𝑡))𝑑𝑡
⬚

𝑡∈𝑇

= ∫ 𝒖(𝑡)𝑇𝒖(𝑡)𝑑𝑡
⬚

𝑡∈𝑇

+∫ 𝑡𝑟𝑎𝑐𝑒(𝐙𝑇𝐙𝐁𝜼(𝑡)𝜼(𝑡)𝑇𝐁𝑇)𝑑𝑡
⬚

𝑡∈𝑇

                     

− 2∫ 𝑡𝑟𝑎𝑐𝑒(𝐁𝜼(𝑡)𝒖(𝑡)𝑇𝐙)𝑑𝑡
⬚

𝑡∈𝑇

. 

By defining 𝐉𝜂𝜂  ≝ ∫ 𝜼(𝑡)𝜼𝑇(𝑡)d𝑡
⬚

𝑡∈𝑇
, we have  

𝑙 = ∫ 𝒖(𝑡)𝑇𝒖(𝑡)𝑑𝑡
⬚

𝑡∈𝑇
+ 𝑡𝑟𝑎𝑐𝑒(𝐙𝑇𝐙𝐁𝐉𝜂𝜂 𝐁

𝑇) − 2𝑡𝑟𝑎𝑐𝑒 (𝐁∫ 𝜼(𝑡)𝒖(𝑡)𝑇𝑑𝑡
⬚

𝑡∈𝑇
𝐙). 

Taking the derivative of the loss function with respect to 𝐁, we have 

𝜕𝑙

𝜕𝐁
=
𝑡𝑟𝑎𝑐𝑒(𝐙𝑇𝐙𝐁𝐉𝜂𝜂 𝐁

𝑇)

𝜕𝐁
− 2

𝜕𝑡𝑟𝑎𝑐𝑒 (𝐁∫ 𝜼(𝑡)𝒖(𝑡)𝑇𝑑𝑡
⬚

𝑡∈𝑇
𝐙)

𝜕𝐁

= 2𝐙𝑇𝐙𝐁𝐉𝜂𝜂 − 2𝐙
𝑇∫ 𝜼(𝑡)𝒖(𝑡)𝑇𝑑𝑡

⬚

𝑡∈𝑇

. 

Making the derivative equal to zero results in  

𝐙𝑇𝐙𝐁∗𝐉𝜂𝜂 = 𝐙𝑇∫ 𝜼(𝑡)𝒖(𝑡)𝑇𝑑𝑡
⬚

𝑡∈𝑇

. 

Using the Kronecker product, we have 

𝑣𝑒𝑐(𝐙𝑇𝐙𝐁∗𝐉𝜂𝜂) = (𝐉𝜂𝜂⊗𝐙𝑇𝐙)𝑣𝑒𝑐(𝐁∗) = 𝑣𝑒𝑐 (𝐙𝑇∫ 𝜼(𝑡)𝒖(𝑡)𝑇𝑑𝑡
⬚

𝑡∈𝑇

). 

Thus, the optimization problem’s solution can be written as  

𝑣𝑒𝑐(𝐁∗) = (𝐉𝜂𝜂⊗𝐙𝑇𝐙)
−1
𝑣𝑒𝑐 (𝐙𝑇∫ 𝜼(𝑡)𝒖(𝑡)𝑇𝑑𝑡

⬚

𝑡∈𝑇

) .                                ∎ 

 

3.4.2 Federated Gradient Boosting by Least Square Approximation (fed-

GB-LSA) 
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This subchapter introduces how to implement FL in the GB algorithm to preserve 

privacy in model training. In particular, the LSA is integrated within the GB algorithm to 

provide a “one-shot” aggregated estimator that is both communicationally and statistically 

efficient for FL. Assuming a total of 𝑁 subjects distributed in 𝐾 local servers, we define 

𝑆 = {1,… ,𝑁} that is the union of 𝐾 mutually exclusive subsets, i.e.,  𝑆 =  U𝑘=1
𝐾 𝑆𝑘 where 

𝑆𝑘 contains subjects in the 𝑘-th local server. Then, we assume the number of subjects in 

server 𝑘 is  |𝑆𝑘| = 𝑁𝑘, so that 𝑁 = ∑ 𝑁𝑘
𝐾
𝑘=1 .  

As described in Chapter 3.4.1, the non-federated GB needs to solve the optimization 

problem in (3.5) for all the base learners by leveraging the entire dataset, which is not 

feasible under the FL setting. Hereinafter, this subchapter focuses on how to solve the 

optimization problem in (3.5) with FL. For simplified notation, we can drop the subscript 

ω in (3.5) and rewrite this optimization problem as 

       𝐁̃𝑝
∗ = argmin

𝐁𝑝

𝑁−1∑ ∑ 𝑙𝑛,𝑝(𝐁𝑝)
⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1 ,                  (3.9) 

where 𝐁̃𝑝
∗  is the optimal solution of the “global model” that can use the entire dataset for 

model estimation, and 𝑙𝑛,𝑝(𝐁𝑝) = ∫ (𝑢𝑛
(ω)(𝑡) − 𝒛𝑛𝑝𝐁𝑝𝜼(𝑡))

2

𝑑𝑡
⬚

𝑡∈𝑇
 as in (3.5). 

Unfortunately, it is not feasible to obtain 𝐁̃𝑝
∗  for the global model in FL because each local 

sever 𝑘  can see its own portion of data, i.e., {𝑢𝑛
(ω)(𝑡), 𝒛𝑛𝑝}

𝑛∈𝑆𝑘

⬚

. Alternatively, the 

optimization problem can be rewritten for each local server as follows: 

𝐁̃𝑝,𝑘
∗ = argmin

𝐁𝑝

𝑁𝑘
−1∑ 𝑙𝑛,𝑝(𝐁𝑝)

⬚
𝑛∈𝑆𝑘

.       (3.10) 
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However, since each server 𝑘 only has access to its own subset of the data, the optimal 

solution 𝐁̃𝑝,𝑘
∗  at each local server is known to be statistically less efficient than the optimal 

solution 𝐁̃𝑝
∗  of the global model, for 𝑘 = 1,… , 𝐾.  

FL is designed to approach this problem in (3.9) with a near-optimal solution under 

the constraint of the mutually exclusive distributed data. Let’s denote 𝐁̃𝑝 as the federated 

solution of (3.9) for ease of discussion. Ideally, the federated estimator 𝐁̃𝑝  should 

outperform all the local estimators 𝐁̃𝑝,𝑘
∗  for 𝑘 = 1, … , 𝐾  while providing comparable 

performance to the global estimator 𝐁̃𝑝
∗ . To obtain the federated estimator 𝐁̃𝑝, an intuitive 

solution is to aggregate all the local estimators 𝐁̃𝑝,𝑘
∗  for 𝑘 = 1,… , 𝐾 and use their average 

as the federated estimator. However, this so-called “Federated Average algorithm” is 

heuristic, and its resulted aggregated estimator is obviously statistically inefficient thus 

requiring many rounds of communication between the local and global servers to iterate 

this averaging procedure. To overcome these challenges, this study proposes a “one-shot” 

approach by approximating the objective function in (3.9) with LSA. Although the local 

estimators are aggregated on the cloud only once, the proposed one-shot aggregated 

estimator is still considered statistically efficient and is shown to empirically outperform 

the estimator obtained by the federated average algorithm which is much more 

communicationally costly.  

We first introduce the conventional LSA (Wang and Leng, 2007) and then derive 

how LSA can be leveraged for FL of the function-on-function regression. Specifically, let’s 

denote 𝐿(𝐁𝑝)  = 𝑁
−1  ∑ ∑ 𝑙𝑛,𝑝(𝐁𝑝)

⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1  and apply Taylor’s expansion to each 

𝑙𝑛,𝑝(𝐁𝑝) at 𝐁̃𝑝,𝑘
∗  for 𝑘 = 1,… , 𝐾. We have  
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      𝐿(𝐁𝑝) = 𝑁−1  ∑ ∑ 𝑙𝑛,𝑝(𝐁𝑝)
⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1   

      ≈ 𝑁−1  ∑ ∑ 𝑙𝑛,𝑝( 𝐁̃𝑝,𝑘
∗ )⬚

𝑛∈𝑆𝑘
𝐾
𝑘=1 + 𝑁−1  ∑ ∑ 𝑙𝑛,𝑝

′ ( 𝐁̃𝑝,𝑘
∗ )

𝑇
(𝑣𝑒𝑐(𝐁𝑝) −

⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1

                        𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ )) +

1

2
𝑁−1  ∑ ∑ (𝑣𝑒𝑐(𝐁𝑝) −

⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1

                        𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ ))

𝑇
𝑙𝑛,𝑝
′′ ( 𝐁̃𝑝,𝑘

∗ )(𝑣𝑒𝑐(𝐁𝑝) − 𝑣𝑒𝑐(𝐁̂𝑝,𝑘
∗ )),       (3.11) 

where the first term 𝑁−1  ∑ ∑ 𝑙𝑛,𝑝( 𝐁̃𝑝,𝑘
∗ )⬚

𝑛∈𝑆𝑘
𝐾
𝑘=1  does not contain  𝐁𝑝 and the second term 

is zero because 𝐁̃𝑝,𝑘
∗  is the optimal solution of the local model in (3.10) resulting in 

𝑙𝑛,𝑝
′ ( 𝐁̃𝑝,𝑘

∗ ) = 𝟎 .  Therefore, the optimization problem in (3.11) is reduced to the 

optimization of the third term  𝑁−1  ∑ ∑ (𝑣𝑒𝑐(𝐁𝑝) −
⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1

𝑣𝑒𝑐( 𝐁̃𝑝,𝑘
∗ ))

𝑇
𝑙𝑛,𝑝
′′ (  𝐁̃𝑝,𝑘

∗ )(𝑣𝑒𝑐(𝐁𝑝) − 𝑣𝑒𝑐( 𝐁̃𝑝,𝑘
∗ )) with respect to 𝐁𝑝.  

As 𝐁̃𝑝,𝑘
∗  is the minimizer of ∑ 𝑙𝑛,𝑝( 𝐁𝑝)

⬚
𝑛∈𝑆𝑘

, 𝐁̃𝑝,𝑘
∗   is √𝑁𝑘 -consistent and 

asymptotically normal, i.e., √𝑁𝑘 (𝑣𝑒𝑐( 𝐁̃𝑝,𝑘
∗
) − 𝑣𝑒𝑐( 𝐁𝑝,0)) →𝑑 𝑁(𝟎,𝚺𝑝,𝑘)  for the true 

parameter 𝐁𝑝,0 . Moreover, given certain statistical assumptions, it is plausible that 

𝔼(𝑁𝑘
−1∑ 𝑙𝑛,𝑝

′′ ( 𝐁̃𝑝,𝑘
∗ )⬚

𝑛∈𝑆𝑘
) ≈ 𝚺𝑝,𝑘

−1  where 𝚺𝑝,𝑘
−1  is the asymptotic covariance matrix of 

𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ ). Therefore, we can use 𝚺̂𝑝,𝑘

−1  as a natural estimator of 𝑁𝑘
−1∑ 𝑙𝑛,𝑝

′′ ( 𝐁̃𝑝,𝑘
∗ )⬚

𝑛∈𝑆𝑘
 in 

equation (3.11) (Wang and Leng, 2007).  

Next, we derive how to extend the conventional LSA algorithm to efficiently 

estimate the function-on-function regression model under FL.  Based on Propositions 3.1, 

we have  

    𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ ) = (𝐉𝜂𝜂⊗ (𝐙𝑝,𝑘

𝑇𝐙𝑝,𝑘))
−1

𝑣𝑒𝑐 (𝐙𝑝,𝑘
𝑇 ∫ 𝒖𝑝,𝑘(𝑡)𝜼

𝑇(𝑡)𝑑𝑡
⬚

𝑡
),      (3.12) 

and 
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𝚺̂𝑝,𝑘 = 𝑁𝑘𝑐𝑜𝑣̂ (𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ ))  

=𝑁𝑘 (𝐉𝜂𝜂⊗ (𝐙𝑝,𝑘
𝑇𝐙𝑝,𝑘))

−1
𝑣𝑒𝑐 (𝐙𝑝,𝑘

𝑇 ∫ 𝜺𝑝,𝑘(𝑡)𝜼
𝑇(𝑡)𝑑𝑡

⬚

𝑡
) (𝑣𝑒𝑐 (𝐙𝑝,𝑘

𝑇 ∫ 𝜺𝑝,𝑘(𝑡)𝜼
𝑇(𝑡)𝑑𝑡

⬚

𝑡
))

𝑇

((𝐉𝜂𝜂⊗

                                                                                  (𝐙𝑝,𝑘
𝑇𝐙𝑝,𝑘))

−1
)
𝑇

                                                          (3.13) 

in which 𝐙𝑝,𝑘 = {𝐙1,𝑝,𝑘, ⋯𝐙𝑛𝑘,𝑝,𝑘}
𝑇

, 𝐙𝑛𝑘,𝑝,𝑘 = ∫ 𝑥𝑛𝑘,𝑝(𝑠)
𝑇

𝑠=0
𝜽(𝑠)𝑇𝑑𝑠 , 𝜺𝑝,𝑘(𝑡) =

(𝜺1,𝑝,𝑘(𝑡),⋯ , 𝜺𝑛𝑘,𝑝,𝑘(𝑡))
𝑇

, and 𝜺𝑛𝑘,𝑝,𝑘(𝑡) = 𝒖𝑛𝑘,𝑝,𝑘(𝑡) − 𝐙𝑛𝑘,𝑝,𝑘𝐁̃𝑝,𝑘
∗ 𝜼(𝑡). Consequently, 

after replacing the ∑ 𝑙𝑛,𝑝
′′ ( 𝐁̃𝑝,𝑘

∗ )⬚
𝑛∈𝑆𝑘

 with its natural estimator 𝑁𝑘𝚺̂𝑝,𝑘
−1  and dropping the 

constants, the general LSA term in (3.11) can be rewritten as 

𝐿̃(𝐁𝑝) = 𝑁−1  ∑∑ (𝑣𝑒𝑐(𝐁𝑝) − 𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ ))

𝑇
𝑙𝑛,𝑝
′′ (𝐁̃𝑝,𝑘

∗ )(𝑣𝑒𝑐(𝐁𝑝) − 𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗ ))

⬚

𝑛∈𝑆𝑘

𝐾

𝑘=1

 

       = ∑
𝑁𝑘

𝑁

𝐾
𝑘=1 (𝑣𝑒𝑐(𝐁𝑝) − 𝑣𝑒𝑐(𝐁̃𝑝,𝑘

∗ ))
𝑇
𝚺̂𝑝,𝑘
−1(𝑣𝑒𝑐(𝐁𝑝) − 𝑣𝑒𝑐(𝐁̃𝑝,𝑘

∗ )),               (3.14) 

which is referred to as the Least Squares Approximation (LSA) of the objective function 

𝐿(𝐁𝑝). Instead of minimizing 𝐿(𝐁𝑝) in (3.11), this study proposes to minimize its LSA, 

i.e., 𝐿̃(𝐁𝑝)  in (3.14) resulting in an analytical minimal solution of 𝐁𝑝  that takes the 

following form:  

𝐁̂𝑝 = (∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 )
−1

(∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 𝐁̃𝑝,𝑘
∗ ).        (3.15) 

 More importantly, we have proven the global asymptotic normality of the LSA 

aggregation estimator in (3.15) in Theorem 3.1. Essentially, this theorem confirms that the 

LSA aggregator 𝐁̂𝑝  is proven to enjoy the same asymptotic normality as the global 

estimator 𝐁̃𝑝
∗ . In other words, it is statistically as efficient as the global estimator in terms 

of resulting bias and variance compared to the true global parameters, providing theoretical 
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guarantee for the proposed “one-shot” FL approach that necessitates only one-round 

communication between the central and local servers.  

Theorem 3.1 (Global asymptotic normality). We denote the asymptotic covariance matrix 

of the global estimator 𝐁̃𝑝
∗  as 𝚺𝑝 , i.e., 𝚺𝑝 = 𝑁𝑐𝑜𝑣(𝑣𝑒𝑐(𝐁̃𝑝

∗)) . Given certain statistical 

regularity conditions and 𝐾 ≪ √𝑁 , we have √𝑁(𝑣𝑒𝑐(𝐁̂𝑝) − 𝑣𝑒𝑐(𝐁𝑝,0)) →𝑑 𝑁(0, 𝚺𝑝) , 

which indicates that the proposed LSA estimator 𝐁̂𝑝  achieves the same asymptotic 

normality as the global estimator 𝐁̃𝑝
∗ . 

(Due to the limitation of space, the detailed proof is listed in Appendix G.) 

Consequently, the aggregated estimator in (3.15), a weighted average of local 

estimates 𝐁̂𝑝,𝑘 and 𝚺̂𝑝,𝑘 for 𝑝 = 1,… , 𝑃 and 𝑘 = 1,… , 𝐾, provides a natural “one-shot” FL 

solution in each GB iteration. Specifically, Table 4 presents the overview of the proposed 

fed-GB-LSA, in which each iteration of the fed-GB-LSA consists of two steps, i.e., Step 1 

obtains the global aggregator {𝐁̂𝑝
(𝜔)}

𝑝=1

𝑃

 for all base learners without data sharing across 

local servers and Step 2 that calculates RSSs to select the best base learner. As shown in 

Table 4, it is obvious that the proposed fed-GB-LSA requires one round of communication 

between the local and global servers in Step 1. In contrast, the conventional fed-GB-

Average, without the theoretical guarantee provided by Theorem 3.1, relies on the gradient 

descent algorithm (see appendix H for details on fed-GB-Average) and thus requires 

iterative communication to obtain a relatively robust aggregator, incurring higher 

communication costs.   

Moreover, the “one-shot” FL strategy is less susceptible to privacy risks arising 

from the communications between local and global servers. Despite the fact that the 
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proposed LSA-based aggregator transmits both the local estimator 𝐁̃𝑝,𝑘
∗  and its covariance 

matrix 𝚺̂𝑝,𝑘
−1  to the central server for global aggregation incurring a higher amount of 

network data per iteration (Zhang et al., 2023), this difference becomes less pronounced 

when considering the overall communicational costs for Step 1. This is because, to 

complete Step 1, the proposed “one-shot” fed-GB-LSA requires one-round of data 

transmission, whereas the classic FL methods such as Federated Averaging require 

multiple rounds of communication and data transmissions between the global and local 

servers (Liu et al., 2022). Therefore, the proposed “one-shot” fed-GB-LSA introduces 

significantly less privacy loss when comparing to other FL methods.  
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Table 4: Pseudo code for the fed-GB-LSA on local and central servers 

Import: {𝑦𝑛(𝑡), 𝑥𝑛1(𝑡), … , 𝑥𝑛𝑃(𝑡)}𝑛=1
𝑁 ; {𝑆𝑘}𝑘=1

𝐾 ; set the step length 𝜈  and stopping 

threshold 𝑚. 

Initialization: 𝑓(0)(𝑡) = 0;𝜔 = 0. 

Iterate until 𝜔 = 𝑚: 

𝜔 = 𝜔 + 1; 

Step 1: “One-shot” update to obtain the global aggregator {𝐁̂𝑝
(𝜔)}

𝑝=1

𝑃

 for all base learners 

Local servers with parallel computing for 𝑘 = 1,… , 𝐾 

• Local data: 𝐃𝑘 = {𝑦𝑛(𝑡), 𝑥𝑛1(𝑡), … , 𝑥𝑛𝑃(𝑡)}𝑛∈𝑆𝑘  

• Compute the negative gradient 𝒖(𝑘,𝜔)  using data 𝐃𝑘 

• Fit 𝒖(𝑘,𝜔) with base learners by applying (3.8) to 𝐃𝑘 to estimate 𝐁̃∗𝑝,𝑘
(𝜔)

 for 𝑝 =

1, … , 𝑃 

• Send local parameters {𝐁̃∗𝑝,𝑘
(𝜔)
, ∑̂𝑝,𝑘

(𝜔)}
𝑝=1

𝑃

 to the central server 

Central server for  

• Receive the local parameters {{𝐁̃∗𝑝,𝑘
(𝜔)
, ∑̂𝑝,𝑘

(𝜔)}
𝑝=1

𝑃

}
𝑘=1

𝐾

 from all 𝐾 local servers 

• Calculate the global parameters 𝐁̂𝑝
(𝜔)

 by (3.15) for 𝑝 = 1,… , 𝑃.  

• Send the aggregated parameters {𝐁̂𝑝
(𝜔)}

𝑝=1

𝑃

 to local servers 

Step 2: Update of the additive model with the best base learner 𝑝(𝜔)  

Local servers with parallel computing for 𝑘 = 1,… , 𝐾 

• Receive the global parameters {𝐁̂𝑝
(𝜔)}

𝑝=1

𝑃

 

• Calculate 𝑅𝑆𝑆𝑝
(𝑘,𝜔)

 by inserting 𝐁̂𝑝
(𝜔)

 and 𝐃𝑘 into (3.6) for 𝑝 = 1,… , 𝑃 

• Send local parameters { 𝑅𝑆𝑆𝑝
(𝑘,𝜔)}

𝑝=1

𝑃

 to the central server 

Central server 

• Receive the local parameters {𝑅𝑆𝑆𝑝
(𝑘,𝜔)}

𝑘=1

𝐾

from all the 𝐾 local servers 

• Calculate the global residuals 𝑅𝑆𝑆𝑝
(𝑎𝑔𝑔,𝜔)

= ∑ RSS𝑝
(𝑘,𝜔)𝐾

𝑘=1  for 𝑝 = 1,… , 𝑃 and 

select the best base learner 𝑝(𝜔) 

• Send the aggregated parameters {𝑝(𝜔) } to local servers 

Local servers with parallel computing for 𝑘 = 1,… , 𝐾 

• Receive the global parameters {𝑝(𝜔) } 
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• Update the additive model by 𝑓(ω)(𝑡)  =  𝑓(ω−1)(𝑡)  + 𝜈ℎ
𝑝(𝜔)
(ω)

 

3.5 Simulation Studies 

Chapter 3.5 validates the performance of the proposed fed-GB-LSA using 

simulated data before applying it for the real-world application in Chapter 3.6. Chapter 

3.5.1 examines the prediction accuracy of the function-on-function regression model using 

the proposed fed-GB-LSA in comparison with the global and local models, and 

demonstrates that the proposed federated model’s performance is comparable to the 

performance of the global model and much better than the performance of local models. 

Chapter 3.5.2 compares the prediction accuracy of the function-on-function regression 

model between two different FL methods, i.e., the proposed fed-GB-LSA and the 

conventional fed-GB-Average and shows that the proposed fed-GB-LSA outperforms the 

conventional fed-GB-Average in a challenging FL setting with heterogeneous data across 

local servers.    

3.5.1 Performance of the fed-GB-LSA 

There are 𝑁 = 1000 observations generated for simulation study. Each observation 

contains 20 predictors, i.e., 𝑃 = 20, with each predictor being generated following the 

equation as below:  

𝑥𝑛𝑝(𝑡) = ∑ 𝑐𝑝𝑘𝜑𝑘(𝑡) + 𝜀(𝑡)𝑘  for 𝑛 = 1, … , 𝑁, 𝑝 = 1,… , 𝑃, and 𝑘 = 1, … , 𝐾.  (3.16) 

𝜑𝑘(𝑡) is the B-spline basis function and 20 basis functions are assumed, i.e., 𝐾  = 20. 

𝜀(𝑡) = ∑ 𝑒𝑘𝜑𝑘(𝑡)𝑘  is the noise term with 𝑒𝑘  being randomly sampled from a normal 

distribution 𝑁(0, 1)  for 𝑘 ∈ {1,⋯ ,20}  and 𝑡 ∈ [0, 100] . The coefficients of all 20 

predictors form a 𝐾 × 𝑃  matrix, i.e., 𝐂 = [𝐂1, ⋯𝐂P] . Each element of 𝐂𝑃  is randomly 

generated by 𝑈(−1, 1) + 𝑒𝑁(0.1𝑝,1)  for 𝑝 = 1,… , 20,  and 𝑘 = 1,… , 20 . Moreover, the 
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response variable 𝑦𝑛(𝑡)  is generated from the predictors based on 𝑦𝑛(𝑡𝑖) =

Δ∑ ∑ 𝑥𝑝(𝑠𝑖′)𝛽𝑝(𝑠𝑖′ , 𝑡𝑖)𝑖′
𝑃
𝑝=1 + 𝜀𝑛(𝑡𝑖)  with Δ = 1 . B-spline basis functions 𝝋(∙) =

(𝜑1(∙),… , 𝜑𝐾(∙))
𝑇

 are also used as the basis system of 𝛽𝑝(𝑠, 𝑡), resulting in 𝛽𝑝(𝑠, 𝑡) =

𝝋(𝑠)𝑇𝐁𝑝𝝋(𝑡). The coefficient matrix of all the predictors is denoted as 𝐁 = [𝐁1, ⋯ , 𝐁20]
𝑻. 

To test the sparse selection performance of the proposed method, the first five predictors 

are assumed to be effective with each element of the coefficient matrix following a normal 

distribution 𝑁(1, 0.5) , while the remaining 15 predictors are assumed to be dummy 

features with each element of the coefficient matrix being zero.  

To examine the model’s performance under different numbers of local servers, the 

generated dataset with 1000 subjects is randomly divided into 𝑘 servers for 𝑘 = 1, … , 48. 

The Mean Absolute Percentage Error (MAPE) is chosen to be the performance measure of 

prediction error. The MAPE is defined as 𝑀𝐴𝑃𝐸 =  
100%

𝑁𝑇
∑ ∑ |

𝑌𝑛𝑡−𝐹𝑛𝑡

𝑌𝑛𝑡
|𝑇

𝑡=1
𝑁
𝑛=1 , where 𝑌𝑛𝑡 is 

the actual value of response 𝑛 in the testing set evaluated at time 𝑡, 𝐹𝑛𝑡 is the corresponding 

prediction value evaluated at time 𝑡. The sampling period length 𝑇 is 101, and the sample 

points are {0, 1, 2,⋯100}. Figure 4 summarizes the Cross-validated MAPEs obtained by 

the proposed federated model, the global model that can access the entire dataset, and the 

local models that can see its own data only. As shown in Figure 4, it is clear that the average 

of the local models indicated by the red color produces the highest MAPEs among the three 

methods, and this prediction error increases drastically when the number of local servers 

increases, and the sample size used for each local serve reduces. As expected, the global 

model indicated by the yellow color consistently achieves the lowest MAPEs. When the 

number of servers is limited, meaning that each local server has sufficient samples for 

estimation, the proposed federated model indicated by the green color is able to obtain 
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similar MAPEs to the global model. When the number of servers keeps increasing, the 

performance of the proposed model declines as expected but is still significantly better than 

local models. 

 

Figure 4: Compare the proposed federated model with both global and local models in 

cross-validated prediction errors for the simulation data with 20 replicates 

3.5.2 Comparison with the fed-GB-Average 

This subchapter aims to compare the proposed model with LSA with the 

conventional federated average model. Essentially, we have two different aggregated 

estimators, i.e., LSA-based estimator in (3.15) written as 

(∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 )
−1

(∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 𝐁̃𝑝,𝑘
∗ )  and a simple averaged estimator written as 

∑
𝑁𝑘

𝑁

𝐾
𝑘=1 𝐁̃𝑝,𝑘

∗ . In each GB iteration, since the proposed fed-GB-LSA is considered as a 

“one-shot” approach, its aggregated estimator is allowed to be computed only once, while 

the competing fed-GB-Average is allowed to iteratively refine the aggregated estimator 

until it converges. This is designed to confirm the efficacy of the proposed “one-shot” 

approach, compared with the federated averaging algorithm. A similar data generation 
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approach is adopted. Instead of fixing the total sample size 𝑁 and changing the number of 

local servers 𝐾 , Chapter 3.5.2 sets the number of samples per server as 100 but uses 

different number of local servers 𝐾 with 𝐾 = 2, 4, 6, 8, and 10.  

Table 5 presents the comparison between fed-GB-LSA and fed-GB-Average with 

4-fold Cross-validation across 20 replicates. The proposed fed-GB-LSA consistently 

outperforms the competing method with significantly lower MAPEs for different numbers 

of local servers. It is worth noting that the Standard Deviations of the predictions are 

slightly higher for the proposed method than the competing method, resulting in 

comparable worst-case MAPEs between the two methods. Overall, it achieves higher 

sensitivities and specificities in variable selection; The variable selection accuracies 

increase as the number of local servers increases and the proposed fed-GB-LSA reached a 

high sensitivity and specificity of 93% and 85%, respectively. While the computational 

runtime increases as the sample size increases, the proposed “one-shot” approach results 

in less computational runtime compared with Fed-GB-Average. In summary, compared 

with fed-GB-Average, the proposed fed-GB-LSA demonstrates an overall superior 

performance in terms of prediction accuracy and variable selection accuracy with much 

less computational and communicational costs.  
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Table 5: Comparison of fed-GB-LSA (LSA) and fed-GB-Average (Avg) with 20 

replicates 

 MAPE Selection Accuracy Computational 

Runtime (min)  Mean SD Worst Case Sensitivity Specificity 

 LSA Avg LSA Avg LSA Avg LSA Avg LSA Avg LSA Avg 

K=2 2.59 2.87 0.40 0.32 3.78 3.59 0.85 0.69 0.77 0.81 1.7 2.4 

K=4 2.25 2.82 0.49 0.22 3.47 3.38 0.85 0.63 0.86 0.83 3.6 5.1 

K=6 2.13 2.76 0.44 0.19 3.17 3.22 0.89 0.65 0.85 0.83 5.9 8.6 

K=8 1.90 2.81 0.44 0.17 3.08 3.33 0.90 0.77 0.85 0.82 8.5 12.3 

K=10 1.90 2.77 0.41 0.15 3.22 3.06 0.93 0.77 0.85 0.82 10.9 16.8 

 

3.6 Application to Telemonitoring of OSA 

This subchapter introduces the application of the proposed method on the data 

collected in the Sleep Heart Health Study (SHHS) (Zhang et al., 2018). SHHS is a popular 

study on OSA epidemiology and its health consequences in the United States. This study 

included 408 subjects and each subject contains 41 functional features with 13 and 28 

features extracted from ECG and EEG signals, respectively, in addition to several non-

functional patient-specific features including age, gender, BMI, and ethnicity. To prepare 

the functional features, each subject’s ECG and EEG are aligned based on the time points 

and divided into consecutive 5-minute intervals from which ECG- and EEC-based features 

are extracted, resulting in multiple functional features to represent information within this 

interval. In total, the 310-minute ECG and EEG recording provides 63 longitudinal 

measures for each of the 408 subjects, i.e., 𝑁 = 408  and 𝑇 = 63 . Specifically, ECG 

features are derived by the Heart Rate Variability (HRV) analysis (Vest et al., 2018; 

Goldberger et al., 2000) that reveals cardiac modulation in sleep by quantifying 

cardiovascular modulation under varying healthy and pathogenic conditions; EEG features 
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are based on the Power Spectral Density (PSD) analysis that decomposes the EEG signal 

into different frequency sub-bands and estimates the average spectral power of the sub-

bands within each interval (Alramadeen et al., 2022). Note that PhysioNet Cardiovascular 

Signal Toolbox (https://physionet.org/content/pcst/1.0.0/) and National Sleep Research 

Resource Luna (https://zzz.bwh.harvard.edu/luna/) are used for feature extraction of ECG 

and EEG, respectively. Last but not least, the response variable of interest is defined as the 

frequency of adverse respiratory events occurring in each time interval. An overview of 

the features is depicted in Table 6.  

Table 6: Description of variables included in the study 

Variables Summary statistics  

Non-functional independent variables 

Age (Unit: year) 59.5 ± 10.7 

Gender (Female: 0; Male: 1) 51.9% ± 50.0% 

Ethnicity (Hispanic: 0; Non-Hispanic: 1) 0.9 ± 0.3 

BMI (Unit: kg/m2) 27.3 ± 3.9 

Functional independent variables 

ECG features  

(13 variables) 
AVNN: Average of all NN intervals (Unit: ms) 

SDNN: Standard deviation of NN intervals (Unit: ms) 

rMSSD: Square root of the mean of squares of the difference between 

adjacent NN intervals 

pNNx: Percentage of differences between adjacent NN intervals that 

are greater than x ms. (x = 10, 20, 30, 40, and 50) 

NN_RR: Ratio of consecutive normal sinus beats (NN) overall cardiac 

inter-beat (RR) intervals 

VLF/LF/HF: Relative spectral power for very low frequency (0.003-

0.04 Hz), low frequency (0.04-0.15 Hz), and High frequency (0.15-0.4 

Hz) 

LF_HF: Ratio of low to high-frequency power 

EEG features 

(28 variables) 

Slow/Delta/Theta/Alpha/Sigma/Beta/Gamma Max/Min/Average/SD: 

Relative spectral power for Slow (0.5-1 Hz), Delta (1-4 Hz), Theta (4-

8 Hz), Alpha (8-12 Hz), Sigma (12-15 Hz), Beta (15-30 Hz), and 

Gamma (30+Hz) 

Functional response variable 

DSI (Number of adverse events per interval) 

https://physionet/
https://zzz/
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 The proposed method is applied to the prepared SHHS dataset for DSI prediction 

from 4 non-functional and 41 functional features among the 408 subjects. The functional 

features are smoothed by the B-spline functions before being fed into the proposed method. 

MAPE is used to evaluate the prediction accuracy. The global model without FL results in 

21.6% MAPE with 10-fold Cross-Validation. This prediction performance is considered 

satisfactory given the difficulty in predicting a functional response variable, which 

demonstrates the efficacy of GB in the estimation of the function-on-function regression. 

Moreover, the global model selects a few significant variables including Gender, AVNN, 

SDNN, pNN10, VLF, LF_HF, Alpha_Max, and Beta_Max among the 45 features.  

 Although the SHHS data is not collected in the FL setting, it is randomly divided 

into local servers to evaluate the proposed fed-GB-LSA with application to a real-world 

dataset. Specifically, the complete dataset with 408 subjects is randomly divided into a 

testing set with 41 subjects and a training set with 367 subjects. The training set is further 

randomly partitioned into several “local servers”. By dividing the training set into 1, 2, 5, 

10, and 15 local servers, respectively, the sample size used for each local server gradually 

decreases. As shown in Figure 5, the proposed fed-GB-LSA’s prediction error increases as 

expected, but it is still drastically lower than the local models.  
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Figure 5: Compare the proposed federated model with both global and local models in 

prediction errors for the SHHS data 

3.7 Conclusion and Discussion 

Big data is often distributed in separate environments and thus is hard to combine 

due to data privacy and ownership concerns. For example, in the healthcare system, it is 

challenging to combine the datasets across hospitals because health data is highly sensitive, 

and its usage is tightly regulated. Consequently, Federated Learning (FL) receives more 

and more attention as it can leverage multi-source big data from local servers without data 

exchange for privacy-preserving training. Among other complicatedly structured data, 

functional data commonly exists in healthcare. The function-on-function regression aiming 

to predict a functional response from other non-function and functional variables is of great 

interest. Take the telemedicine of Obstructive Sleep Apnea (OSA) as an example. As a 

prevalent cardiac syndrome characterized by abnormal respiratory patterns during sleep, 

the diagnosis of OSA relies on an overnight recording of patients’ multi-channel bio-

signals, such as ECG and EEG, via wearable sensors, in addition to several patient-specific 
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characteristics. Such data is stored at separate sleep labs across different hospitals. 

Therefore, it is of clinical interest for a privacy-preserving model that automatically 

predicts the functional disease indicator from the multivariate function and non-functional 

variables. However, there is no existing research on FL of the function-on-function 

regression.  

The major challenge in FL of the function-on-function regression is a lack of a 

“meaningful” approach to collaboratively train multiple local models and generate a 

federated estimator without data sharing. The conventional Federated Average model 

requires many rounds of communication which is communicationally costly. To address 

this, this study proposed the first-of-its-kind federated Gradient Boosting algorithm with 

the Least Squares Approximation (fed-GB-LSA) for efficient, privacy-preserving 

federated learning of the function-on-function regression. The methodological contribution 

of the proposed method is multi-fold. First, the GB-based algorithm allows a sparse 

selection of multivariate functional and non-functional features in the function-on-function 

regression model prediction, which tackles a long-standing challenge in functional 

regression. Second, the parameter estimation by the GB algorithm is efficient and results 

in separate sub-optimization problems with explicitly analytical solutions. Last but not 

least, the LSA provides a “one-shot” approach for FL that is proven to enjoy global 

asymptotic normality, which ensures communicational- and statistical efficiency.  

The proposed “one-shot” fed-GB-LSA was tested in both simulation studies and a 

real-world dataset for OSA telemedicine, which demonstrates that the proposed federated 

model’s performance is comparable to the performance of the global model and much 

better than the performance of local models. In a more challenging FL setting with 
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considerable heterogeneity across local servers, the proposed fed-GB-LSA significantly 

outperforms the conventional fed-GB-Average. The superior performance of the proposed 

method was also demonstrated in a real-world dataset for OSA telemedicine.  
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Chapter 4 Vertical Federated Functional Gradient Boosting 

with Differential Privacy 

4.1 Introduction 

Vertical Federated Learning (VFL) has been recognized as an instrumental 

mechanism that facilitates data collaboration among enterprises, which complies with strict 

privacy regulations such as the General Data Protection Regulation (GDPR) established by 

the European Union (Voigt & Von dem Bussche, 2017). Unlike Horizontal Federated 

Learning (HFL), where decentralized datasets largely share a common feature space with 

minimal overlap in sample space, VFL involves significant overlap in sample space 

coupled with diverse feature sets among different organizational participants. 

This overlap necessitates a collaborative approach to model development in VFL, 

contrasting/which contrasts with HFL, where participants may independently develop 

models using their localized datasets. In VFL, the primary data protection strategy shifts 

from protecting gradients during their transmission to a central aggregator—secured 

through mechanisms such as differential privacy (Dwork, 2011; Dwork et al., 2006; Dwork 

and Roth, 2014; Sheffet, 2017; Lee et al., 2019) and secret sharing (Bonawitz et al., 

2017)—to sharing intermediate results while maintaining control over local data. 

In the healthcare sector, the application of VFL to the analysis of Electronic Health 

Records (EHR) from multiple hospitals exemplifies its potential. In particular, in the 

context of health telemonitoring for Obstructive Sleep Apnea (OSA), employment of a 

function-on-function regression model is advantageous. OSA, a condition marked by 
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abnormal respiratory patterns during sleep, is typically diagnosed by analyzing overnight 

multi-channel bio-signal recordings such as electrocardiograms (ECG) and 

electroencephalograms (EEG), which are collected using wearable sensors (Alramadeen et 

al., 2023). These recordings are manually examined by technicians to determine the 

frequency of adverse respiratory events, which is a labor-intensive and time-consuming 

process.  

Employment of a function-on-function regression model in a VFL framework can 

autonomously predict the frequency of these events across all epochs from the bio-signal 

features extracted within the same epochs. This ability not only streamlines the diagnostic 

process but also improves the accuracy of clinical assessments at the population level. 

Despite its evident suitability, there is a notable absence of research on the application of 

VFL to function-on-function regression models. This gap in the research represents a 

significant opportunity to advance the efficient and effective diagnosis and management of 

conditions such as OSA. By leveraging VFL, hospitals can collaboratively develop models 

that generalize across diverse EHR data, which thereby enhances clinical decision-making 

while adhering to strict data privacy regulations. This method preserves data sovereignty 

for each participant and leverages collective insights from shared analyses, which 

underscores VFL's potential to transform data-sensitive sectors such as healthcare. 

A major challenge in the meaningful implementation of federated learning for any 

machine learning model lies in ensuring that the federated model performs satisfactorily, 

particularly as the implementation of differential privacy can significantly degrade 

performance. This project contributes the first-of-its-kind Vertical Federated Learning 
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Functional Regression with Gradient Boosting, an approach designed for efficient, privacy-

preserving federated learning of function-on-function regression models. 

The rest of this chapter is organized as follows: Chapter 4.2 reviews the relevant 

work; Chapter 4.3 presents the model formulation of the Vertical Federated Learning 

function-on-function regression model with Gradient Boosting; Chapter 4.4 presents the 

simulation studies to evaluate the empirical performance of the proposed method with 

respect to the prediction accuracy and privacy-preserving; Chapter 4.5 conducts a case 

study in Obstructive Sleep Apnea (OSA) research. Chapter 4.6 concludes this chapter.  

4.2 Literature Review 

4.2.1 Functional Regression 

In recent years, there has been an increase in the collection of large datasets, which 

are gathered either continuously or at predetermined intervals. These datasets are 

categorized as "functional data," and their analysis is becoming increasingly common. 

Functional Data Analysis (FDA) focuses on creating statistical methods specifically 

designed to analyze this type of data, which has a particular emphasis on functional 

regression. Studies by Ramsay and Silverman (2005), Ferraty (2006), Bosq (2012), 

Horvath and Kokoszka (2012), and Hsing and Eubank (2015) have reviewed various FDA 

techniques. 

Several models have been developed to address different types of functional data 

relationships: scalar-on-function regression involves scalar responses and functional 

predictors; function-on-scalar regression deals with functional responses and scalar 

predictors; and function-on-function regression involves both functional responses and 

predictors. In scalar-on-function regression, Ramsay and Dalzell's (1991) integrated 
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generalized linear modeling and principal component analysis using L-spline theory 

applied to random function data. Brown et al. (2001) developed a model using wavelet 

coefficients and Bayesian variable selection techniques, while Ratcliffe et al. (2002) 

explored binary response modeling with functional and additional scalar covariates. 

Ramsay and Silverman (2005) further refined scalar-on-function regression through 

penalized least squares estimation and basis expansion. Reiss and Ogden (2007) introduced 

a functional version of principal component regression and partial least squares, and 

Goldsmith et al. (2012) extended the generalized linear mixed model to incorporate 

functional predictors. Additionally, Yao and Müller (2010), and McLean et al. (2014) 

introduced nonlinear approaches to scalar-on-function regression. In function-on-scalar 

regression, Guo et al. (2003) presented a smoothing spline ANOVA model, Lin et al. (2004) 

demonstrated that smoothing spline estimators are asymptotically equivalent to kernel 

estimators, and Reiss et al. (2010) developed a generalized ridge regression estimator 

through penalized generalized least squares. In function-on-function regression, Ramsay 

and Silverman (2005) formulated the bivariate coefficient function as a double expansion 

of basis functions. Yao and Müller (2005) and Wu and Müller (2011) explored a specific 

double expansion using eigenfunctions of the covariance functions of functional covariates 

and predictors. Ivanescu et al. (2015) treated multivariate function-on-function regression 

as a penalized additive model, while Luo and Xi (2017) approached the problem using 

eigenfunctions and solved it as a penalized generalized functional eigenvalue problem. 

Ding et al. (2019) proposed a semi-parametric model for degradation curves analysis. 

4.2.2 Gradient Boosting 
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In many machine learning scenarios, the task often revolves around developing 

non-parametric models for regression or classification, particularly when specific expert-

driven models are not feasible. Non-parametric methods, which include neural networks 

and support vector machines, become essential because they define the relationships 

between input variables without fixed assumptions. A commonly used strategy in data-

driven modeling is the ensemble approach, which involves combining numerous simpler, 

weaker models to form a stronger, more accurate ensemble prediction. Boosting is a 

notable technique within this framework, which is characterized by its incremental 

assembly of models. With each iteration, a new, initially weak base learner model is 

introduced that is designed to minimize the previous errors of the ensemble, which thereby 

refines the prediction progressively. 

The development of boosting methods that utilize gradient descent was formalized 

in key works by Freund and Schapire (1997), Friedman et al. (2000), and Friedman (2001), 

which led to the creation of gradient boosting machines. This methodology not only 

provided a mathematical framework but also rationalized the choice of model 

hyperparameters, which thus establishes a solid foundation for the ongoing development 

of gradient boosting models. In recent years, gradient-boosting-based algorithms have 

demonstrated significant efficacy across various domains. Notably, XGBoost or eXtreme 

Gradient Boosting (Chen and Guestrin, 2016) has performed well in numerous Kaggle 

competitions. LightGBM (Ke et al., 2017) is recognized for its efficiency in training speed, 

and CatBoost (Prokhorenkova et al., 2018) has been effective in enhancing generalization 

accuracy. Brockhaus et al. 2017 proposed a gradient boosting algorithm that takes several 

functional regression models as the base learners. 
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4.2.3 Vertical Federated Learning  

Federated Learning (FL) has advanced as a prominent model in the field of 

distributed learning, notably for its contribution to data privacy preservation. This model 

is differentiated into three primary forms based on the data distribution method among 

participating entities: Horizontal, Vertical, and Hybrid. Vertical Federated Learning (VFL) 

is particularly applicable where data across entities is segmented vertically. In typical 

scenarios, one entity holds the outcomes, or labels, alongside specific attributes of data 

points, while other entities contribute additional attributes for the same data points, which 

thereby maintains data confidentiality and prevents exposure to other participants. VFL 

finds its utility in various sectors, such as collaborations between telecommunications firms 

and entertainment service providers, or between airlines and car rental companies, which 

facilitates the enhancement of service quality and customer experience through protected 

data insights. 

The architecture of Vertical Federated Learning can be structured with or without 

a coordinator. In the coordinated model (Hardy et al., 2017), a central coordinator oversees 

the training process via encrypted communications with the participants and does not 

access the raw data. Typically, this coordinator role is assumed by an active participant or 

a trusted third party (Li et al., 2023). In contrast, the architectures proposed by He et al. 

(2021) and Sun et al. (2022) dispense with the coordinator, which thereby reduces the 

system's complexity. This framework has been extended to include multiple collaborating 

parties (Cheng et al., 2021; Zhao et al., 2022), where participants exchange public keys and 

intermediate results while keeping the computations of gradients, loss functions, and model 

updates localized. 
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According to Li et al. (2023), VFL can be classified into non-split VFL, split VFL, 

and customized VFL, depending on the extent of model sharing. In non-split VFL, each 

participant possesses a complete model and calculates gradients based on their local data 

and intermediate information shared by others. This configuration can further be divided 

into systems with a coordinator (Jin et al., 2021; Benmalek et al., 2022; Sun et al., 2021) 

and those without (Zhang 2021; Zhang & Jiang, 2022; Liu et al., 2020). In the split VFL 

configuration (Zhang et al., 2021; Hashemi et al., 2021; Kang et al., 2020), the model is 

partitioned into a top model and several bottom models, in which each party, whether active 

or passive, maintains their respective bottom models. The division typically occurs at a 

fully connected layer. For instance, in one configuration, parties A and B may manage 

three and four features, respectively, in which each operates a part of the network. In 

customized VFL, the algorithm involves a super participant who holds the label and other 

passive participants who hold different features to jointly train the best classification tree 

model (Wu et al. 2020, Luo et al. 2021, Tan et al. 2020). Li et al. (2023) and Wang et al. 

(2023) also provide the applications of cybersecurity on IoT systems. 

4.2.4 Differential Privacy 

In the context of Vertical Federated Learning (VFL), addressing privacy concerns 

is crucial, which necessitates the design of schemes that effectively safeguard participant 

privacy. Differentially Private (DP) data release is a promising technique to disseminate 

data without compromising the privacy of data subjects. Differential privacy (Dework, 

2011, Dework et al. 2006, Dework and Roth, 2014, Sheffet. 2017, Lee et al. 2019) is shown 

to be a promising direction to release datasets while protecting individual privacy. It is now 

widely accepted as a strong and rigorous notion of data privacy. It has received acclaim in 
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theory, which won the 2017 Gödel Prize and the 2016 TCC Test-of-Time Award. At the 

same time, it has now been seen in practice in many organizations, including Apple, Google, 

Microsoft, the US Census Bureau, and many more.  

Differential Privacy (DP) is a protocol that mitigates the risk of privacy breaches 

during learning tasks by adding noise to the original data or results, though it must be 

carefully calibrated to avoid significant performance degradation or insufficient privacy 

protection. Wang et al. (2020) developed a DP-based algorithm that maintains data 

confidentiality for VFL participants, which achieves outcomes comparable to those 

obtained in non-private VFL settings that use generalized linear models. Additionally, Xu 

et al. (2021) proposed a multi-party learning framework for vertically partitioned datasets 

that achieves differential privacy by adding noise directly to the objective function, which 

requires only a single round of noise addition and secure aggregation. 

Beyond model training, DP can also be applied during the model evaluation phase 

to protect against the leakage of private label information. Sun et al. (2022) proposed two 

algorithms that allow for accurate computation of the AUC (area under curve) metric using 

the label DP (Ghazi et al. 2021) in VFL. Moreover, Tian et al. (2020) and Li et al. (2022) 

have applied differentially private noise to federated gradient-based decision trees in 

customized ways to achieve an optimal privacy-utility trade-off. Chen et al. (2022) 

integrated Graph Neural Networks (GNN) into the split VFL framework, which utilizes 

DP-enhanced additive secret sharing to enhance data privacy. 

4.3 Proposed Method 

The functional observation dataset is 𝒟 = {𝒚, 𝐗} , in which 𝒚 =

{𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑁(𝑡)}
𝑇  and 𝐗 = {𝒙1, 𝒙2, ⋯ , 𝒙𝑃}  where 𝒙𝑝 =
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{𝑥1𝑝(𝑡),⋯ , 𝑥𝑛𝑝(𝑡),⋯ , 𝑥𝑁𝑝(𝑡)}
𝑇

for 𝑛 = 1, … , 𝑁 . 𝑁  denotes the number of observations 

and  𝑃 denotes the number of predictors. The sampling period is 𝑇 so that 𝑡 ∈ 𝑇. Using the 

framework of Vertical Federated Learning without coordinator, we assume there are 𝐾 +

1 parties with 𝐾 ≥ 1. The party that holds the functional response {𝒚} is called active 

party. All the other parties who hold the functional predictor are called passive parties. 

Each functional covariate vector 𝒙𝑝 = {𝑥1𝑝(𝑡),⋯ , 𝑥𝑁𝑝(𝑡)}
𝑇
 in  𝒟 is distributed among 𝐾 

passive parties {{𝒙𝑝𝑘 ∈ ℝ
𝑁×𝑇}

𝑝𝑘∈𝑠𝑘
}
𝑘=1

𝐾

, where 𝑠𝑘 is the set of predictors that stored in 

party 𝑘.  The size of 𝑠𝑘 is |𝑠𝑘| = 𝑃𝑘, for 𝑘 ∈ {1, 2⋯ ,𝐾}, such that ∑ 𝑝𝑘 
𝐾
𝑘=1 = 𝑃. Then we 

have ⋃ 𝑠𝑘
𝐾
𝑖=1 = {1, 2⋯ , 𝑃} and 𝑠𝑖⋂𝑠𝑗 = ∅ for any 𝑖, 𝑗 ∈ {1, 2⋯ , 𝐾} and 𝑖 ≠ 𝑗. 

In this chapter, we consider the following function-on-function linear regression 

model: 

𝑦𝑛(𝑡) = ∑ ∫ 𝑥𝑛𝑝(𝑠)
⬚

𝑠∈𝑇
𝛽𝑝(𝑠, 𝑡)𝑑𝑠

𝑃
𝑝=1 + 𝜀𝑛(𝑡),    (4.1) 

where 𝛽𝑝(𝑠, 𝑡) is the bivariate coefficient function for the 𝑝-th functional predictor, and 

𝜀𝑛(𝑡) is the random error function that follows a normal distribution. Model (4.1) assumes 

that both the functional response and the predictors are centered. Centering refers to 

adjusting each function so that its mean over the observed domain 𝑇 is zero. This is a 

standard practice in functional data analysis because it normalizes the data, which ensures 

that all functional observations have a common baseline.  

4.3.1 Functional Regression with Gradient Boosting 

In this subchapter, we introduce the methodology for solving model (4.1) via 

gradient boosting (GB), which specifically excludes considerations of vertical federated 
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learning. Gradient boosting constructs the predictive model through sequential aggregation 

of base leaners with the form as 

𝔼(𝑦𝑛(𝑡)|𝒙𝑁) = ∑ ℎ𝑚(𝑡)
𝑀
𝑚=1 ,                 (4.2) 

in which ℎ𝑚(𝑡) is the additive effect that depends on one functional predictor 𝒙𝑝 , 𝑝 ∈

{1, 2⋯ , 𝑃}. 𝑀 is assumed to be the number of additive effects. 

 Equation (4.2) can be solved iteratively. For each iteration, we have the candidate 

base learners as {ℎ𝑝(𝑡)}𝑝=1
𝑃 , in which ℎ𝑝(𝑡) = ∫ 𝑥𝑛𝑝(𝑠)

⬚

𝑠∈𝑇
𝛽𝑝(𝑠, 𝑡)𝑑𝑠 . Each candidate 

base learner models the historical effect from the corresponding functional predictor, i.e., 

𝑥𝑛𝑝(𝑠).  

We assume the bivariate coefficient function 𝛽𝑝(𝑠, 𝑡)  has a double expansion on 

one basis system 𝜽 with 𝐾1 functions and another basis system 𝜼 with 𝐾2 functions, i.e., 

𝛽𝑝(𝑠, 𝑡)  = 𝜽(𝑠)𝑇𝐁𝑝𝜼(𝑡)  in which 𝜽(𝑡) = (𝜃1(𝑡), … , 𝜃𝐾1(𝑡))
𝑇

, 𝜼(𝑡) =

(𝜂1(𝑡), … , 𝜂𝐾2(𝑡))
𝑇

, and 𝐁𝑝 ∈ 𝑹
𝐾1×𝐾2 . Using a 1 × 𝐾1  row vector 𝒛𝑛𝑝 =

∫ 𝑥𝑛𝑝(𝑠)
⬚

𝑠∈𝑇
𝜽(𝑠)𝑇𝑑𝑠  to precalculated 𝑛 -th observation of the 𝑝 -th predictor and the 

selected basis functions, candidate base learners can be rewritten as ℎ𝑝(𝑡) = 𝒛𝑛𝑝𝐁𝑝𝜼(𝑡).  

Given any functional regression model 𝑓(𝑡, 𝒛𝑛), the empirical loss function for the 

functional response and regression model is formulated as 𝑙(𝒚, 𝑓|X) = ∑ ∫ (𝑦𝑛(𝑡) −
⬚

𝑡∈𝑇
𝑁
𝑛=1

𝑓(𝑡, 𝒛𝑛) )
2𝑑𝑡, which leads GB to solve the following optimization problem: 

𝑓∗ = argmin
𝑓

𝑙(𝒚, 𝑓|𝐗)                                 (4.3) 

In the ω-th iteration of GB, ω ∈ {1,⋯ ,𝑀}, the algorithm computes the negative 

gradient of the risk function with respect to the current model estimation 𝑓, i.e., 𝒖(ω) ∈
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𝑅𝑁×1 = −
𝜕𝑙

𝜕𝑓
|
𝑓 =𝑦̂𝑛

[ω−1]
 
. Subsequently, GB regresses the negative gradient 𝒖(ω) to each of 

the 𝑃 candidate base learners by addressing the following optimization problems: 

𝐁̂𝑝
(ω) = argmin

𝐁𝑝

∑ ∫ (𝑢𝑛
(ω)(𝑡) − ℎ𝑝(𝑡))

2

𝑑𝑡
⬚

𝑡∈𝑇
𝑁
𝑛=1 .     (4.4) 

Here, 𝑢𝑛
(ω)(𝑡) is the 𝑛-th component of 𝒖(ω). The optimal solution from problem (4.4) 

facilitates the derivation of the fitted base learners {ℎ̂𝑝(𝑡) = 𝒛𝑛𝑝𝐁̂𝑝
(ω)𝜼(𝑡)}

𝑝=1

𝑃

.  Among 

these fitted base learners, GB selects the one that minimizes the Residual Sum of Squares 

(RSS): 

𝑅𝑆𝑆𝑝 = ∑ ∫ (𝑢𝑛
(ω)(𝑡) − ℎ̂𝑝(𝑡))

2

𝑑𝑡
⬚

𝑡∈𝑇
𝑁
𝑛=1   for  𝑝 = 1,… , 𝑃.  (4.5) 

Thus, ℎ𝑚(𝑡) in equation (4.2) is the fitted base learner with minimal RSS of (4.5) in the ω-

th iteration. GB updates the model by 𝑓(ω)(𝑡)  =  𝑓(ω−1)(𝑡)  + 𝜈ℎ𝑚(𝑡), in which 𝜈 is the 

preset learning rate. The GB algorithm continues to iterate until a predefined stopping 

criterion is met, i.e., reaching the maximum number of iterations 𝑀 . Table 7 below 

summarizes the implementation steps of gradient boosting to solve the problem (4.3), 

which do not account for Vertical Federated Learning conditions. 
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Table 7: Pseudo code for the Gradient Boosting Functional Regression 

Import: 𝒟 = {𝑦𝑛(𝑡), 𝑥𝑛1(𝑡), … , 𝑥𝑛𝑃(𝑡)}𝑛=1
𝑁 ;  

Initialization: 𝑓(0)(𝑡) =
1

𝑁
∑ 𝑦𝑛(𝑡)
𝑁
𝑛=1 ; 𝜔 = 0. Set stopping threshold 𝑚 and learning 

rate 𝜈 

Iterate until 𝜔 = 𝑀: 

𝜔 = 𝜔 + 1; 

• Compute the negative gradient 𝒖(𝜔)  given 𝑓(𝜔−1)(𝑡) and 𝒟 

• Fit 𝒖(𝜔) with base learners ℎ𝑝(𝑡) by solving problem (4.4) to estimate 𝐁̂𝑝
(ω)

 for 

𝑝 = 1,… , 𝑃 

• Compute the Residual Sum of Squares (RSS) by (4.5) for 𝑝 = 1, … , 𝑃 

• Select best base learner ℎ𝑚(𝑡)  with minimal RSS among {ℎ̂𝑝(𝑡)}
𝑝=1

𝑃
 

• Update the additive model by 𝑓(ω)(𝑡)  =  𝑓(ω−1)(𝑡)  + 𝜈ℎ𝑚(𝑡)   
 

4.3.2 Vertical Federated Functional Regression with Gradient Boosting 

In this chapter, we explore the application of gradient boosting to solve the 

function-on-function regression problem (4.1) within the framework of Vertical Federated 

Learning (VFL), which particularly emphasizes privacy protection. VFL allows various 

parties, which are referred to as active or passive, to collaboratively learn a predictive 

model without necessitating a central coordinator. This decentralized setup, while 

beneficial in many respects, inherently risks the exposure of sensitive data. This includes 

both raw and intermediate data exchanged between parties, which can lead to significant 

privacy breaches. 

To address this substantial concern, we incorporate Differential Privacy (DP) into 

our VFL framework. Initially conceptualized by Dwork et al. in 2006 and subsequently 

elaborated upon in further studies (Dwork, 2011; Dwork and Roth, 2014), DP introduces a 

robust method to safeguard individual data points within a dataset. By employing DP, we 

establish mathematical guarantees that limit the information about any single data entry 
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that can be inferred by participation in the federated model. This approach quantifies and 

confines the extent of privacy leakage during the collaborative learning process, which thus 

preserves the confidentiality of sensitive information across distributed data sources in the 

absence of centralized control.  

Definition 4.1 ((𝜀, 𝛿)-differential privacy). A randomized mechanism ℳ:𝒟 → ℛ  with 

domain 𝒟 and range ℛ satisfies (𝜀, 𝛿)-differential privacy if for any two adjacent datasets 

𝐷,𝐷′ ∈ 𝒟, which differ at exactly one data point; for any subset of output 𝑆 ⊆ ℛ, it holds 

that  

ℙ[ℳ(𝐷) ∈ 𝑆] ≤ 𝑒𝜀ℙ[ℳ(𝐷′) ∈ 𝑆] + 𝛿. 

Definition 4.1 articulates a quantitative measure to evaluate the risk associated with 

privacy leakage, which utilizes parameters 𝜀  and 𝛿 . Lower values of these parameters 

signify a higher degree of privacy protection, whereas increasing values indicate a 

weakening of these protections. In the domain of differential privacy, the Gaussian 

Mechanism (Dework and Roth, 2014) is a post-hoc mechanism that converts a 

deterministic real-valued function 𝑓:𝒟 → ℝ𝑚 to a randomized algorithm with differential 

privacy guarantee. It relies on sensitivity of 𝑓, as given by Definition 4.2. 

Definition 4.2. Let 𝑓:𝒟 → ℝ𝑚. The ℓ2-sensitivity of 𝑓 is  

𝑆𝑓 = max
𝒟,𝒟′

‖𝑓(𝒟) − 𝑓(𝒟′)‖2, 

where 𝒟,𝒟′ are any two adjacent datasets.  

This sensitivity quantifies the greatest potential change in the output of 𝑓 resulting from a 

single alteration in its input dataset 𝒟 . In response to this measure, the Gaussian 

Mechanism applies noise, sourced from a Gaussian distribution, at a magnitude 

proportional to the sensitivity. The distribution's parameters are strategically chosen based 
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on 𝜀 and 𝛿, which ensure compliance with differential privacy standards. This strategic 

application of noise acts as a safeguard, which substantially mitigates the risk of privacy 

breaches through controlled data obfuscation. Given Definition 4.2, we have Gaussian 

Mechanism in Lemma 4.1. 

Lemma 4.1 (Gaussian Mechanism). For any deterministic real-valued function 𝑓:𝒟 →

ℝ𝑚 with sensitivity 𝑆𝑓, we can define a randomized function by adding Gaussian noise to 

𝑓: 

𝑓𝑑𝑝: = 𝑓(𝒟) + 𝒓, 

where 𝒓 is sampled from a multivariate normal distribution 𝒩(0, 𝑆𝑓
2𝜎2 ∙ 𝐈). When 𝜎 ≥

√2log (1.25/𝛿)

𝜀
, 𝑓𝑑𝑝 is (𝜀, 𝛿)-differential privacy for 0 < 𝜀 ≤ 1 and 𝛿 > 0. 

Proof of Lemma 4.1 can be found in (Dwork and Roth, 2014). For simplicity, denote  

𝜎𝜀,𝛿 =
√2log (1.25/𝛿)

𝜀
 in the following paragraphs. 

 In the iterations of Algorithm in Table 7, active party computes the negative 

gradient is 𝒖(ω) = (𝑢1
(ω), ⋯ , 𝑢𝑁

(ω))𝑇, based on the model ensemble formed in the previous 

iteration. Subsequently, each passive party engages in regression on this negative gradient 

that utilizes its designated base learners. These procedural steps, however, pose a risk of 

contravening the stringent privacy stipulations inherent in Vertical Federated Learning 

(VFL) because the negative gradient may include sensitive private information. 

 To mitigate this privacy concern, Differential Privacy (DP) is integrated into each 

iteration of the gradient boosting process. This integration ensures that the disclosure of 

the negative gradient adheres to privacy-preserving protocols. Specifically, DP 

mechanisms are employed to introduce a carefully calibrated amount of noise to the 
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negative gradient before it is shared among the parties. This approach allows the 

continuation of collaborative learning under the VFL framework while effectively 

safeguarding sensitive information against unauthorized disclosure, which thus aligns the 

process with the required privacy standards. 

 In iteration 𝜔 of gradient boosting in Table 7, we use basis system 𝜼 to express 

𝑢𝑛
(ω)

 of  𝒖(ω) as 𝑢𝑛
(ω)(𝑡) = 𝒄𝑛

𝑇𝜼, where 𝒄𝑛 ∈ ℝ
𝑄2 as 𝑄2 is the number of basis functions in 

𝜼. Thus, the sensitive information of 𝑢𝑛
(ω)

 is captured by 𝒄𝑛  given basis system 𝜼. The 

coefficient matrix of 𝒖(ω) is  𝐂 = (𝒄1, ⋯ , 𝒄𝑁)
𝑇 ∈ ℝ𝑁×𝑄2. To bound the elements of 𝐂, we 

clip it as 

 𝐂̃ =
𝐂

‖𝐂‖max
.      (4.6) 

The sensitivity of 𝐂̃ is 𝑆𝐂̃ = max𝐂̃,𝐂̃′‖𝐂̃ − 𝐂̃′‖2 = 2𝑄2
1/2

. Given 𝐂̃ as the coefficient matrix 

of negative gradient, the solution of problem (4.4) for predictor 𝑝 is 

𝑣𝑒𝑐(𝐁1) = (𝐉𝜂𝜂⊗𝐙𝑝
𝑇𝐙𝑝)

−1
𝑣𝑒𝑐(𝐙𝑝

𝑇𝐂̃𝐉𝜂𝜂),    (4.7) 

in which 𝐉𝜂𝜂 = ∫ 𝜼(𝑡)𝜼𝑇(𝑡)d𝑡
⬚

𝑡∈𝑇
, 𝐙𝑝 = (𝒛1𝑝,⋯ , 𝒛𝑁𝑝)

𝑇 ∈ ℝ𝑁×𝑄1 , and ⊗  represents 

Kronecker product. 

To ensure compliance with the privacy-preserving properties specified by (𝜀, 𝛿)-

differential privacy, the release of negative gradient from active party in each iteration 

should meet the differential privacy requirement as Definition 4.1. The implementation of 

differential privacy involves the strategic injection of noise into the negative gradient 

before its dissemination. This noise addition is meticulously calibrated based on the 

sensitivity of the gradient function and the parameters. Applying the Gaussian Mechanism 
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as outlined in Lemma 4.1 to the matrix 𝐂̃, we have the differential privacy-enabled release 

matrix: 

𝐂dp = 𝐂̃ + 𝐑,      (4.8) 

in which 𝐑 ∈ ℝ𝑁×𝑄2 . The entries within 𝐑 are independently and identically distributed 

(i.i.d.), each sampled from a Gaussian distribution 𝒩(0, 4𝑄2𝜎𝜀,𝛿
2 ). Thus, the corresponding 

solution of 𝐂𝑑𝑝 is 

𝑣𝑒𝑐(𝐁2) = (𝐉𝜂𝜂⊗𝐙𝑝
𝑇𝐙𝑝)

−1
𝑣𝑒𝑐(𝐙𝑝

𝑇𝐂dp𝐉𝜂𝜂).  (4.9) 

For simplicity, we drop the subscript 𝑝 in 𝐙𝑝 in the further analysis.   

 The asymptotic optimal of 𝑣𝑒𝑐(𝐁2) in equation (4.9) is implied by Theorem 4.1 

below.  

Theorem 4.1. Given 𝐙, and 𝐉𝜂𝜂, for any given 𝛽, we have  

ℙ[‖𝑣𝑒𝑐(𝐁2) − 𝑣𝑒𝑐(𝐁1)‖ > 𝛽] ≤ 𝑂 (exp (−
𝑁2𝛽2

8𝑄2
2𝜎𝜀,𝛿

2 ‖𝐙‖𝐹
2)). 

The norm ‖∙‖ denote ℓ2 norm.  

(Due to the limitation of space, the detailed proof is listed in Appendix J.) 

 Given Theorem 4.1, we can further derive Corollary 4.1, which indicates 𝑣𝑒𝑐(𝐁2) 

converges in probability to 𝑣𝑒𝑐(𝐁1). 

Corollary 4.1. Given 𝐙, and 𝐉𝜂𝜂, we have 

plim
𝑛→∞

𝑣𝑒𝑐(𝐁2) = plim
𝑛→∞

𝑣𝑒𝑐(𝐁1). 

(Due to the limitation of space, the detailed proof is listed in Appendix K.) 

 Theorem 4.1 and Corollary 4.1 provide the properties of the proposed differential 

privacy estimator presented in equation (4.9), in contrast to the estimator in equation (4.7). 

These results suggest that the influence of the Gaussian Mechanism, as described in 
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equation (4.8), diminishes as the sample size increases. In addition to equation (4.8), we 

limit sensitivity by clipping the coefficients of the negative gradient as detailed in equation 

(4.6). To examine the effect of this clipping, we consider the estimator without clipping, 

expressed as: 

𝑣𝑒𝑐(𝐁3) = (𝐉𝜂𝜂⊗𝐙𝑝
𝑇𝐙𝑝)

−1
𝑣𝑒𝑐(𝐙𝑝

𝑇𝐂𝐉𝜂𝜂).   (4.10) 

The fitted base learner based on the estimator in equation (4.10) is given by: ℎ3(𝑡) =

𝐙𝑝𝐁3𝜼(𝑡). In comparison to the fitted base learner based on the estimator in equation (4.7), 

which is ℎ2(𝑡) = 𝐙𝑝𝐁2𝜼(𝑡), we have ℎ3(𝑡) = ‖𝐂‖maxℎ2(𝑡). To maintain the performance 

consistency of gradient boosting, we dynamically adjust the step length in each iteration 

ω ∈ {1,⋯ ,𝑀} to counteract the impact of clipping as: 

𝜂(ω) = 𝜈‖𝐂‖max.     (4.11) 

Furthermore, since the negative gradient is clipped before being broadcast to each passive 

party, the active party retains the information about ‖𝐂‖max, Consequently, equation (4.11) 

adheres to the privacy-preserving requirement.  

After each passive party has conducted regression on the released negative gradient 

using their designated base learners, they compute the Residual Sum of Squares (RSS) 

from this regression as equation (4.5). These RSS values are then transmitted to the active 

party. Subsequently, the passive party whose base learner has demonstrated the most 

effective performance, as indicated by the lowest RSS, sends the estimated coefficients of 

their model to the active party. These steps ensure the collaborative updating of the model 

while minimizing data exchange. The privacy concerns associated with these two data 

transmissions are highlighted by Lemma 4.2. 
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 Table 8 below outlines the implementation details of Vertical Federated Learning 

Functional Regression with Gradient Boosting. 

Table 8: Pseudo code for Vertical Federated Learning Functional Regression with 

Gradient Boosting on active and passive parties 

Import:  𝒟 = {𝒚, {𝒙𝑝(𝑡) ∈ ℝ
𝑁×𝑝𝑘×𝑇}

𝑘=1

𝐾
};  

Initialization: Active Party 𝑓(0)(𝑡) =
1

𝑁
∑ 𝑦𝑛(𝑡)
𝑁
𝑛=1 ; 𝜔 = 0; Set stopping threshold 𝑚 

Iterate until 𝜔 = 𝑀: 

𝜔 = 𝜔 + 1; 

Active Party 

• Compute the negative gradient 𝒖(𝜔)  given 𝑓(𝜔−1)(𝑡) and 𝒚 

• Clip the negative gradient coefficient as (4.6) 

• Release the negative gradient with DP 𝐂(ω,𝑑𝑝)𝜼 as (4.8) to each passive party 

Passive Parties with parallel computing for 𝑘 = 1,⋯ ,𝐾 

• Regress negative gradient 𝐂(ω,𝑑𝑝)𝜼 on each base learner ℎ𝑝(𝑡) in {ℎ𝑝(𝑡)}𝑝∈𝑠𝑘
as 

(4.9) 

• Compute { 𝑅𝑆𝑆𝑝
(𝑘,𝜔)}

𝑝∈𝑠𝑘
 as (4.5) and send to the active party 

Active Party 

• Select the best base learner 𝑝∗ with minimal RSS  

Passive Party 

• Send ℎ𝑝∗
(ω)(𝑡) to active party 

Active Party 

• Compute 𝜂(ω) as (4.11) 

• Update the additive model by 𝑓(ω)(𝑡)  =  𝑓(ω−1)(𝑡)  + 𝜂(ω)ℎ𝑝∗
(ω)(𝑡) 

 

Lemma 4.2 (Post-Processing). If 𝑀:𝒳 → 𝒴 is (𝜀, 𝛿)-differential privacy and 𝑊:𝒴 → 𝒵 

is any randomized function, then the algorithm 𝑊 ∘𝑀 is (𝜀, 𝛿)-differential privacy. 

Proof of Lemma 4.2 can be found in Dwork et al. 2006. By Lemma 4.2, we have the 

releases of  { 𝑅𝑆𝑆𝑝
(𝑘,𝜔)}

𝑝∈𝑠𝑘
 and  ℎ𝑝∗

(ω)
 in Algorithm in Table 8 are (𝜀, 𝛿) -differential 

privacy. Thus, all data transmissions in Algorithm in Table 8 are (𝜀, 𝛿)-differential privacy. 
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4.4 Simulation Studies 

There are 𝑁 = 6,250  observations generated for the simulation study. Each 

observation contains 20 predictors, i.e., 𝑃 = 20 , with each predictor being generated 

following the equation as below:  

𝑥𝑛𝑝(𝑡) = ∑ 𝑎𝑝𝑞𝜑𝑞(𝑡) + 𝜀(𝑡)𝑞  for 𝑛 = 1,… ,𝑁, 𝑝 = 1,… , 𝑃, and 𝑞 = 1,… , 𝑄.           

𝜑𝑘(𝑡) is the B-spline basis function and 20 basis functions are assumed, denoted as 𝑄 = 

20. 𝜀(𝑡) = ∑ 𝑒𝑞𝜑𝑞(𝑡)𝑞  is the noise term with 𝑒𝑘 being randomly sampled from a normal 

distribution 𝑁(0, 1)  for 𝑞 ∈ {1,⋯ ,20}  and 𝑡 ∈ [0, 100] . The coefficients of all 20 

predictors form a 𝑄 × 𝑃 matrix, i.e., 𝐀 = [𝐀1, ⋯𝐀P].  

Assume there are two passive parties, and each passive party will have 10 

predictors. To distinguish between predictors and passive parties, the coefficient matrix, 

𝐀𝑝𝑘 , of each predictor is randomly generated by 𝑁(𝑘, 0.5) + 𝑒𝑁(0.1𝑝𝑘,0.1𝑘)  for 𝑝𝑘 =

1,… , 10, 𝑘 = 1, 2, in which 𝑘 indicates the passive party to which this predictor belongs. 

The response variable 𝑦𝑛(𝑡)  is generated from the predictors based on 𝑦𝑛(𝑡𝑖) =

Δ∑ ∑ 𝑥𝑝(𝑠𝑖′)𝛽𝑝(𝑠𝑖′ , 𝑡𝑖)𝑖′
𝑃
𝑝=1 + 𝜀𝑛(𝑡𝑖)  with Δ = 1 . B-spline basis functions 𝝋(∙) =

(𝜑1(∙), … , 𝜑𝑄(∙))
𝑇

 are also used as the basis system of 𝛽𝑝(𝑠, 𝑡), which results in 𝛽𝑝(𝑠, 𝑡) 

= 𝝋(𝑠)𝑇B𝑝𝝋(𝑡) . The coefficient matrix of all the predictors is denoted as 𝐁 =

[𝐁11 , ⋯ , 𝐁𝑃1 , 𝐁12 , ⋯ , 𝐁𝑃2]
𝑇 . To test the sparse selection performance of the proposed 

method, the first two predictors 𝑝𝑘 = 1, 2 of each passive party, i.e., 𝑘 = 1, 2, are assumed 

to be effective with each element of the coefficient matrix following a normal distribution 

𝑁(10, 1), while the remaining eight predictors, 𝑝𝑘 = 3,⋯ ,10, of each passive party are 

assumed to be dummy features with each element of the coefficient matrix being zero.  



95 

 

Prior to the evaluation of the predictive performance, the convergence of the 

proposed method is assessed. As depicted in Figure 6, the regression residuals of the 

proposed method diminish as the iteration count increases. Notably, the algorithm 

terminates sooner than the gradient boosting algorithm, which does not incorporate 

Vertical Federated Learning (VFL) and privacy-preserving mechanisms, as outlined in 

Algorithm 4.1. This premature termination may result in the potential underfitting of the 

proposed method, which subsequently leads to a decline in prediction performance, as 

evidenced by the subsequent simulation study. 

 
Figure 6: Convergence of the Proposed Method in Table 8 in comparison with Gradient 

Boosting Functional Regression in Table 7 

Among 6,250 observations, 80%, i.e., 5,000 samples, are selected as the training set, 

and 20%, i.e., 1,250 samples, are selected as the test set. Five-fold cross-validation is 

performed for the prediction performance comparisons of the proposed method. To ensure 

privacy-preserving, we apply (𝜀, 𝛿)-differential privacy in the release of negative gradient. 
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Different settings of (𝜀, 𝛿) are chosen to test the prediction performance with different 

privacy budgets.  

We deploy a self-adaptive step length for the gradient boosting algorithm. This is the 

step length that is decided by the MAX norm of coefficient matrix of negative gradient 

before clipping, which is 𝜂(𝜔) = min(0.1‖𝐂‖MAX, 𝜂
(𝜔−1)). An upper bound for step length 

is used to prevent ‖𝐂‖MAX goes to extremely large. 

Four different settings are given to check the influence of differential privacy 

regarding the test performance. Mean Absolute Percentage Error (MAPE) is chosen to be 

the performance measure of prediction error. The MAPE is defined as 𝑀𝐴𝑃𝐸 =

 
100%

𝑁𝑇
∑ ∑ |

𝑌𝑛𝑡−𝐹𝑛𝑡

𝑌𝑛𝑡
|𝑇

𝑡=1
𝑁
𝑛=1 , where 𝑌𝑛𝑡  is the actual value of response 𝑛 in the testing set 

evaluated at time 𝑡, and 𝐹𝑛𝑡 is the corresponding prediction value evaluated at time 𝑡. The 

sampling period length 𝑇 is 101, and the sample points are {0, 1, 2,⋯ 100}. For each test, 

20 duplications are performed and the average MAPE is reported as the prediction accuracy 

with 5-fold cross-validation. The results are summarized in Table 9 

Table 9: Prediction Performance by MAPE of the Proposed Method 

Setting 𝜺 𝜹 MAPE in % 

Exp 1 10 0.02 0.677 

Exp 2 10 0.05 0.554 

Exp 3 5 0.02 4.424 

Exp 4 5 0.05 3.363 

 

 We employ a black-box Membership Inference Attack (MIA) to assess the privacy-

preserving capabilities of the proposed method. For the sake of simplicity, we have altered 
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the data generation parameters. A dataset of 5,000 samples is generated. Each element of 

the coefficient matrix used to generate the 𝑝𝑘 -th predictors of passive party 𝑘, 𝐀𝑝𝑘 , is 

drawn from a normal distribution 𝑁(𝑘 − 10, 0.05) for the first 2,500 samples for 𝑝𝑘 =

1,… , 10,  𝑘 = 1, 2 . The remaining 2,500 samples’ 𝐀𝑝𝑘  are drawn from a normal 

distribution 𝑁(10 − 𝑘, 0.05). The coefficient matrix that captures the relationship between 

the 𝑝𝑘 -th predictors of passive party 𝑘 and the response, 𝐁𝑝𝑘, is generated from 𝑁(1, 0.05) 

for 𝑝𝑘 = 1, 2, 𝑘 = 1, 2, and 0 for 𝑝𝑘 = 3,… , 10, 𝑘 = 1, 2. 

MIA aims to identify the presence or absence of individual records within the 

training data of a data owner. Such attacks are particularly pertinent when the nature of the 

training dataset exposes sensitive information, such as a medical dataset that contains 

patients with various types of cancer, or a dataset utilized to predict the stage of pregnancy 

based on shopping cart data. In the context of Vertical Federated Learning, where all 

passive parties are assumed to be malicious, it is crucial to evaluate the performance of 

MIA with respect to each release of negative gradient from the active party, which 

specifically focuses on the DP component as defined in equation (4.8).  

The MIA assumes an honest-but-curious adversary with access to the trained model 

(referred to as the target model), the distribution of input data, knowledge about 

hyperparameters, and DP mechanisms employed during training. The attacker trains an 

attack model, typically a binary classifier, which is capable of accurately classifying data 

points as members or non-members of the target model's training dataset. MIA can be 

categorized into black-box and white-box approaches, depending on whether the attacker 

has access to the target model's learned parameters and architecture. In this simulation, we 
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utilize a black-box MIA, which supposes that the attacker lacks access to the learned 

parameters and architecture of the target model.  

Training a binary classifier effectively poses a significant challenge in this context. 

However, Shokri et al. (2017) introduced a notable technique called shadow training, which 

presents a viable solution. This approach involves creating multiple shadow models that 

emulate the behavior of the target model. It operates under the premise that the attacker 

possesses detailed knowledge of the target model's structure and learning algorithm. For 

these shadow models, the attacker has their shadow training datasets 𝒟train
sallow and shadow 

test datasets 𝒟test
sallow  . The sallow models make predictions given 𝒟train

sallow  and 𝒟test
sallow  as 

𝒫train
sallow and 𝒫test

sallow. Together with the ground true of membership of these dataset ℒtrain
sallow 

and ℒtest
sallow, the attacker can train the binary classifier-based attack model by training set 

𝒟train = 𝒟
1⋃𝒟2 , where 𝒟1 ⊆ {𝒟train

sallow, 𝒫train
sallow, ℒtrain

sallow, 𝟏}  and 𝒟2 ⊆

{𝒟test
sallow, 𝒫test

sallow, ℒtest
sallow, 𝟎}. In 𝒟train,  {𝟏, 𝟎} is the response for the training of attack model, 

where 𝟏 represents the corresponding samples that are “in” the training set of target model, 

and 𝟎 otherwise. Figure 7 provides an overview of the training of the attack model.  
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Figure 7: Overview of the shadow training technique 

To demonstrate the impact of the privacy parameters 𝜀 and 𝛿 on the performance 

of the MIA, we focus on two critical metrics that assess the identification of training data: 

precision, which measures the proportion of records predicted as "in" that actually belong 

to the training dataset; and recall, which measures the proportion of truly contained records 

that are correctly predicted as "in". As shown in Figure 8, a decrease in 𝜀 and 𝛿 results in 

the attacker model's performance that approaches that of random guessing, where both 

precision and recall stabilize around 50%. These results suggest that the proposed DP 

method can effectively prevent privacy leakage with a small (𝜀, 𝛿) pair.  

 

Figure 8: Precision and recall of MIA under different DP settings 
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4.5 Case Study 

This subchapter introduces the application of the proposed method on the data 

collected in the Sleep Heart Health Study (SHHS). The SHHS, a seminal epidemiological 

study of Obstructive Sleep Apnea (OSA) in the United States, examines its broader health 

implications. The study encompasses a cohort of 2,338 participants, each of whom is 

characterized by 41 functional features. These features comprise 13 and 28 features 

extracted from electrocardiogram (ECG) and electroencephalogram (EEG) signals, 

respectively. In addition, the dataset includes 20 non-functional, patient-specific features 

such as age, gender, body mass index (BMI), ethnicity, and others. A comprehensive 

summary of all features included in this case study is presented in Table 10. 
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Table 10: Description of variables included in the study 

Variables Summary 

statistics  

Non-functional independent variables 

Age (Unit: year) 59.5 ± 10.7 

Gender (Female: 0; Male: 1) 51.9% ± 50.0% 

Ethnicity (Hispanic: 0; Non-Hispanic: 1) 0.9 ± 0.3 

BMI (Unit: kg/m2) 27.3 ± 3.9 

chol (Cholesterol milligrams per deciliter mg/dl) 203.5 ± 35.1 

hdl (High-density lipoprotein cholesterol milligrams per deciliter 

mg/dl) 

49.8 ± 15.1 

trig (Triglycerides milligrams per deciliter mg/dl) 152.4 ± 143.1 

fev1 (Forced Expiratory Volume in One Second liters) 2.9 ± 0.8 

fvc (Forced Vital Capacity liters liters) 3.8 ± 1.0 

attabl02 (Fall asleep while at the dinner table 1-4) 1.0 ± 0.2 

drive02 (Fall asleep while driving 1-4) 1.2 ± 0.4 

ess_s1 (Epworth Sleepiness Scale score 0-24) 7.3 ± 4.2 

incar02 (Fall asleep while in a car 1-4) 1.1 ± 0.4 

lydwn02 (Fall asleep while lying down in the afternoon 1-4) 2.8 ± 1.0 

pgrcar02 (Fall asleep while a passenger in a car 1-4) 1.8 ± 0.9 

sitlch02 (Fall asleep while sitting quietly after lunch 1-4) 1.8 ± 0.9 

sitpub02 (Fall asleep while sitting inactive in a public place 1-4) 1.6 ± 0.8 

sitrd02 (Fall asleep while sitting and reading 1-4) 2.4 ± 1.0 

sittlk02 (Fall asleep while sitting and talking 1-4) 1.1 ± 0.4 

watv02 (Fall asleep while watching TV 1-4) 2.6 ± 1.0 

Functional independent variables 

ECG 

features  

(13 

variables) 

AVNN: Average of all NN intervals (Unit: ms) 

SDNN: Standard deviation of NN intervals (Unit: ms) 

rMSSD: Square root of the mean of squares of difference between 

adjacent NN intervals 

pNNx: Percentage of differences between adjacent NN intervals that are 

greater than x ms. (x = 10, 20, 30, 40, and 50) 
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NN_RR: Ratio of consecutive normal sinus beats (NN) over all cardiac 

inter-beat (RR) intervals 

VLF/LF/HF: Relative spectral power for very low frequency (0.003-0.04 

Hz), low frequency (0.04-0.15 Hz), and High frequency (0.15-0.4 Hz) 

LF_HF: Ratio of low to high frequency power 

EEG 

features 

(28 

variables) 

Slow/Delta/Theta/Alpha/Sigma/Beta/Gamma Max/Min/Average/SD: 

Relative spectral power for Slow (0.5-1 Hz), Delta (1-4 Hz), Theta (4-8 

Hz), Alpha (8-12 Hz), Sigma (12-15 Hz), Beta (15-30 Hz), and Gamma 

(30+Hz) 

Functional response variable 

DSI (Number of adverse events per interval) 

 

The 61 functional and non-functional features identified are distributed among five 

passive parties, as illustrated in Table 11. Initially, to establish a comparative framework, 

the gradient boosting functional regression is executed without the integration of Vertical 

Federated Learning. The outcomes of this test are detailed in Table 12. The prediction error 

is quantified using MAPE and validated through a five-fold cross-validation process. 

Table 11: Variables’ distribution in VFL 

Party Features 

Active Party  DSI 

Passive Party 1 Age, Gender, Ethnicity, BMI 

Passive Party 2 ECG features(13 variables), EEG features(28 variables) 

Passive Party 3 chol, hdl, trig 

Passive Party 4 fev1, fvc 

Passive Party 5 attabl02, drive02, ess_s1, incar02, lydwn02, pgrcar02, sitlch02, 

sitpub02, sitrd02, sittlk02, watv02 

 

In Table 12, the term 'global model' denotes the gradient boosting algorithm capable 

of selecting base learners from the entire array of both functional and non-functional 

features. The designations PP1 through PP5 correspond to models that selectively 

incorporate features from only their respective passive parties. 
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Table 12: MAPE of different models without VFL 

 
Global 

Model 
PP1 PP2 PP3 PP4 PP5 

MAPE in % 17.79 21.35 18.86 26.09 32.58 25.35 

 

Table 13 provides the prediction error associated with our proposed Vertical 

Federated Gradient Boosting Functional Regression Model. We have implemented 

differential privacy parameters with ε set at 5 and δ at 0.05. Given the integration of random 

noise within the model, we conducted 10 replicates of the test. The results, which 

encompass both the mean and the standard deviation of the MAPEs, are derived from a 

five-fold cross-validation. 

Table 13: MAPE of different models with VFL 

 
Global 

Model 
PP1 PP2 PP3 PP4 PP5 

MAPE in % 20.67 ± 0.84 41.32 ± 13.17 23.37 ± 1.50 61.72 ± 35.39 47.65 ± 16.80 45.22 ± 22.53 

4.6 Conclusion and Discussion 

In this study, we explored a novel approach to Vertical Federated Learning (VFL) 

by integrating Gradient Boosting for Functional Regression with Differential Privacy (DP). 

This innovative methodology facilitates secure and efficient collaborative learning across 

multiple organizations while ensuring data privacy, a critical requirement in the healthcare 

sector. Our focus was on addressing the complexities of function-on-function regression 

within a federated learning framework, particularly emphasizing the healthcare domain 

with a case study on Obstructive Sleep Apnea (OSA). 

Our approach extends the capabilities of traditional regression models by 

accommodating function-on-function relationships. This is particularly relevant in medical 

contexts where continuous monitoring data, such as ECG and EEG signals, are used for 

predictive modeling. By incorporating DP into the federated learning framework, we 
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addressed one of the major challenges in VFL—privacy preservation. The differentially 

private gradient sharing mechanism ensures that individual data points remain secure, 

mitigating the risks associated with data breaches and privacy violations. 

The application of our proposed model on the Sleep Heart Health Study (SHHS) 

dataset provided practical insights into its effectiveness. The SHHS dataset, rich with 

functional and non-functional features, served as an ideal test bed. Our model's 

performance in predicting OSA outcomes demonstrated the feasibility and advantages of 

our approach. The federated model achieved performance metrics comparable to a global 

model trained on centralized data, while significantly outperforming local models trained 

in isolation. This indicates that VFL, when combined with DP, does not compromise on 

predictive accuracy despite the stringent privacy constraints. 

One of the key benefits of incorporating differential privacy in our model is its 

ability to defend against membership inference attacks. These attacks aim to determine 

whether a particular data point was part of the training dataset, posing significant privacy 

risks. The DP mechanism effectively obfuscates individual data contributions, making it 

exceedingly difficult for an attacker to ascertain the presence of specific records in the 

training set. Our experiments confirmed that even with advanced membership inference 

techniques, the privacy-preserving capability of our DP-enhanced model remained robust, 

thus providing strong guarantees against such attacks. 

The incorporation of differential privacy successfully protected individual data 

points during the training process. Our results confirmed that the DP mechanism effectively 

obfuscated sensitive information, reducing the risk of privacy breaches without degrading 

model performance. The proposed approach is scalable and can be generalized to various 
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other domains beyond healthcare. The principles of combining functional regression with 

DP in a federated setting are applicable wherever sensitive functional data are involved. 

The implications of this study are profound for the healthcare industry. By enabling secure, 

privacy-preserving predictive modeling, healthcare providers can collaborate more 

effectively, leading to improved diagnostic tools and patient outcomes. This is especially 

crucial in areas like OSA, where continuous monitoring data are critical for accurate 

predictions. Our approach aligns with global privacy regulations such as GDPR, 

highlighting its potential for widespread adoption in regulated industries. As privacy 

concerns continue to grow, the adoption of VFL frameworks with integrated DP will likely 

become a standard practice. 

Future research can explore further enhancements in the differential privacy 

mechanism to improve its efficiency and robustness. Additionally, expanding the 

functional regression techniques to handle more complex data structures and relationships 

will enhance the applicability of our model. While our case study focused on OSA, the 

methodology is applicable to a wide range of scenarios involving functional data. 

Applications in finance, environmental monitoring, and other fields can benefit from this 

approach. 

In conclusion, this study advances the field of Vertical Federated Learning by 

demonstrating that it is possible to achieve high-performance predictive models while 

preserving data privacy. The integration of Gradient Boosting for Functional Regression 

with Differential Privacy offers a robust solution to the challenges of collaborative learning 

in privacy-sensitive domains. By specifically addressing the threat of membership 

inference attacks, our approach ensures that individual data contributions remain 
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confidential, fostering greater trust and collaboration among data-sharing entities. This 

work lays the groundwork for future innovations, fostering a more secure and collaborative 

data science landscape. 
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Chapter 5 Discussion and Future Work 

This dissertation presents three significant contributions to the field of machine 

learning and its application in health data analysis, each addressing unique challenges and 

proposing novel solutions. 

In Topic I, we developed the Multi-modal Mixed-type Structural Equation Model 

(M2-SEM) with structured sparsity for subgroup discovery from heterogeneous health data. 

The integration of the Gauss-Hermite-enabled Expectation-Majorization-Minimization 

(GH-EMM) algorithm within the Expectation Maximization framework demonstrated the 

model’s capability to handle high-dimensional, multi-modal mixed-type data effectively. 

Our simulation studies and real-world applications, specifically in identifying subgroups 

at risk for adverse cardiometabolic outcomes, illustrate the model's potential to enhance 

targeted health interventions and promote population health. 

Topic II introduced the Federated Function-on-Function Regression with an 

efficient Gradient Boosting algorithm (fed-GB-LSA) for privacy-preserving telemedicine. 

The federated learning paradigm ensures data privacy while achieving performance 

comparable to global models. The innovative GB-based algorithm facilitates sparse 

selection of multivariate functional and non-functional features, providing an efficient 

estimation method. The application to telemonitoring of Obstructive Sleep Apnea (OSA) 

underscores the practical relevance and effectiveness of our approach. 

In Topic III, we extended our research to Vertical Federated Learning (VFL) with 

Differential Privacy for function-on-function regression models. By integrating differential 

privacy into the federated gradient boosting process, we addressed the trade-off between 

model performance and privacy protection. The empirical results from simulation studies 
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and the case study on OSA validate the robustness of our method, highlighting its 

applicability in privacy-sensitive healthcare environments. 

Overall, this dissertation advances the field of machine learning by developing 

innovative models and algorithms that address the complexities of multi-modal, mixed-

type, and functional data in health research, while ensuring data privacy and efficient 

computation. 

The research presented in this dissertation opens several avenues for future 

exploration and development. Enhanced model interpretability is a critical area for future 

work. While our proposed models and algorithms have demonstrated robust performance, 

there remains a need for improved interpretability. Future work can focus on developing 

methods to provide more transparent insights into the decision-making processes of these 

complex models, particularly for clinical applications where understanding the rationale 

behind predictions is crucial. 

Another important direction is scalability to larger datasets. As health data 

continues to grow in volume and variety, ensuring the scalability of our models is essential. 

Future research should aim to optimize computational efficiency and memory usage to 

handle even larger datasets, potentially through distributed computing frameworks. 

Integration with real-time data presents an exciting opportunity to enhance the 

applicability of our models. The incorporation of real-time data from wearable sensors and 

mobile health applications will allow the development of algorithms that can adapt to 

streaming data and provide real-time predictions and interventions, which would be a 

valuable extension of this work. 
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Broadening the applicability of our methods to diverse health conditions is another 

promising avenue. While this dissertation focused on cardiometabolic risk factors and 

Obstructive Sleep Apnea, the methodologies developed can be extended to other health 

conditions. Future studies should explore the application of these models to a wider range 

of diseases and health outcomes, further validating their utility and robustness. 

Ethical and regulatory considerations will continue to be of paramount importance. 

With the increasing emphasis on data privacy and ethical AI, future research should address 

these considerations, particularly in federated learning frameworks. Developing and 

validating models that comply with evolving privacy regulations and ethical standards will 

be critical for their acceptance and deployment in real-world settings. 

Finally, creating collaborative platforms for health data sharing is an important area 

for future work. Encouraging collaboration across institutions while preserving data 

privacy is a significant challenge. Future research can focus on developing secure, 

federated platforms that facilitate the sharing and analysis of health data across different 

organizations, enabling more comprehensive and inclusive health research. 

In conclusion, the advancements made in this dissertation lay a strong foundation 

for future research and development in the intersection of machine learning, health data 

analysis, and privacy preservation. By continuing to innovate and address the challenges 

outlined, we can significantly contribute to improving health outcomes and advancing 

personalized medicine. 
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Appendix 

A. Derivation of the expectation terms 𝜑1, 𝜑3, and 𝜑4 in function (2.10) 

A1. Deriving the expectation 𝜑1 in function (2.10) 

From the function (2.10), we have 𝜑1 ({𝜶
(𝑚), 𝐋(𝑚), 𝐁(𝑚),𝚿(𝑚)}

𝑚=1
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) =
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From the equation (2.3), given 𝚯1𝑚 , the conditional distribution of 
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(𝑚), 𝚿(𝑚)) , i.e., a multivariate Gaussian 

distribution. After dropping the constants, we have  
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(𝑚)
) 

   +
1

2
𝑡𝑟 (𝐿(𝑚)

𝑇
𝚿(𝑚)−1𝐿(𝑚) (𝐸 (𝜼𝑖

(𝑚)𝜼𝑖
(𝑚)𝑇|𝒙𝑖

(𝑚)
; 𝚯̂(𝑗−1)) − 𝐸(𝜼𝑖

(𝑚)|𝒙𝑖
(𝑚)
; 𝚯̂(𝑗−1))𝐸(𝜼𝑖

(𝑚)|𝒙𝑖
(𝑚)
; 𝚯̂(𝑗−1))

𝑇
)), 

where 𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚); 𝜣̂(𝑗−1)) = ∑ 𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚), 𝑠𝑖,𝑘 = 1; 𝜣̂
(𝑗−1))𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖

(1), ⋯ 𝒙𝑖
(𝑀); 𝜣̂(𝑗−1))𝐾

𝑘=1  and 

𝐸 (𝜼𝑖
(𝑚)𝜼𝑖

(𝑚)𝑇|𝒙𝑖
(𝑚)
; 𝚯̂(𝑗−1)) = ∑ 𝐸 (𝜼𝑖

(𝑚)𝜼𝑖
(𝑚)𝑇|𝒙𝑖

(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂(𝑗−1))𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖
(1),⋯𝒙𝑖

(𝑀); 𝚯̂(𝑗−1))𝐾
𝑘=1 .  

Moreover, because 𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂
(𝑗−1) follows a Gaussian distribution, i.e.,  

𝑁(
𝐿̂(𝑚)

𝑇
𝚿̂(𝑚)−1𝒙𝑖

(𝑚)
+𝚺̂(𝑚,𝑘)

−1
𝝁̂(𝑚,𝑘)

𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)−1𝐿̂(𝑚)+𝚺̂(𝑚,𝑘)

−1 , (𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)−1𝐿̂(𝑚) + 𝚺̂(𝑚,𝑘)

−1
)
−1

),  we have  

𝐸(𝜼𝑖
(𝑚)|𝒙𝑖

(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂
(𝑗−1)) =

𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)

−1
𝒙𝑖
(𝑚)

+𝚺̂(𝑚,𝑘)
−1
𝝁̂(𝑚,𝑘)

𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)

−1
𝐿̂(𝑚)+𝚺̂(𝑚,𝑘)

−1 , and 𝐸 (𝜼𝑖
(𝑚)𝜼𝑖

(𝑚)𝑇|𝒙𝑖
(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂(𝑗−1)) 

= (𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)−1𝐿̂(𝑚) + 𝚺̂(𝑚,𝑘)

−1
)
−1

−
𝐿̂(𝑚)

𝑇
𝚿̂(𝑚)

−1
𝒙𝑖
(𝑚)

+𝚺̂(𝑚,𝑘)
−1
𝝁̂(𝑚,𝑘)

𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)

−1
𝐿̂(𝑚)+𝚺̂(𝑚,𝑘)

−1

𝑇
𝐿̂(𝑚)

𝑇
𝚿̂(𝑚)

−1
𝒙𝑖
(𝑚)

+𝚺̂(𝑚,𝑘)
−1
𝝁̂(𝑚,𝑘)

𝐿̂(𝑚)
𝑇
𝚿̂(𝑚)

−1
𝐿̂(𝑚)+𝚺̂(𝑚,𝑘)

−1 .  
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Lastly, we have  𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖
(1),⋯ 𝒙𝑖

(𝑀); 𝚯̂(𝑗−1)) =
𝑤̂𝑘∏ 𝑓(𝒙𝑖

(𝑚)
|𝑠𝑖,𝑘=1;𝚯̂

(𝑗−1))
𝑀1
𝑚=1

∑ 𝑤̂𝑘∏ 𝑓(𝒙
𝑖
(𝑚)

|𝑠𝑖,𝑘=1;𝚯̂
(𝑗−1))

𝑀1
𝑚=1

𝐾
𝑘=1

, 

in which 𝒙𝑖
(𝑚)|𝑠𝑖,𝑘 = 1; 𝚯̂(𝑗−1)~𝑁(𝐿̂(𝑚)𝝁̂(𝑚,𝑘) + 𝐵̂(𝑚)𝒛𝑖

(𝑚), 𝐿̂(𝑚)𝚺̂(𝑚,𝑘)𝐿̂(𝑚)
𝑇
+ 𝚿̂(𝑚)) for  

𝑚 =  1,… ,𝑀1.                            

∎ 

      A2. Deriving the expectation 𝜑3 in function (2.10) 

Based on the function in (2.9), we have 

𝜑3 ({{𝝁
(𝑚,𝑘), 𝚺(𝑚,𝑘)}

𝑘=1

𝐾
}
𝑚=1

𝑀

) = ∑ {−∑ 𝐸
𝜼𝑖
(𝑚)

,𝒔𝑖|𝒙𝑖
(1)
,⋯𝒙𝑖

(𝑀)
;𝚯̂(𝑗−1) 

log (𝑓(𝜼𝑖
(𝑚)
|  𝒔𝑖; 𝚯3𝑚))

𝑁
𝑖=1 +𝑀

𝑚=1

𝜆2 ‖𝐮(𝑚)‖
2
} .To obtain an explicit form of 𝜑3 , we need to derive 

𝐸
𝜼𝑖
(𝑚)

,𝒔𝑖|𝒙𝑖
(1)
,⋯𝒙𝑖

(𝑀)
;𝚯̂(𝑗−1) 

log (𝑓(𝜼𝑖
(𝑚)
|  𝒔𝑖; 𝚯3𝑚))  as follows. By function (2.2), the 

conditional distribution of 𝜼𝑖
(𝑚)

 given 𝒔𝑖,𝑘 = 1 is 𝑁(𝝁(𝑚,𝑘), 𝚺(𝑚,𝑘)) that is a multivariate 

Gaussian distribution. After dropping the constants, this expectation can be rewritten as 

𝐸
𝜼𝑖
(𝑚)

,𝒔𝑖|𝒙𝑖
(1)
,⋯𝒙𝑖

(𝑀)
;𝚯̂(𝑗−1)

log (𝑓(𝜼𝑖
(𝑚)|  𝒔𝑖; 𝚯3𝑚)) = 

∑

{
 
 

 
 

1

2
log|𝚺(𝑚,𝑘)|

+
1

2
(𝐸(𝜼𝑖

(𝑚)|𝒙𝑖
(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂

(𝑗−1)) − 𝝁(𝑚,𝑘))
𝑇
𝚺(𝑚,𝑘)

−1
(𝐸(𝜼𝑖

(𝑚)|𝒙𝑖
(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂

(𝑗−1)) − 𝝁(𝑚,𝑘))

+
1

2
𝑡𝑟 (𝐸 (𝜼𝑖

(𝑚)
𝜼𝑖
(𝑚)𝑇

|𝒙𝑖
(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂

(𝑗−1)))
}
 
 

 
 

𝐾
𝑘=1 𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖

(1),⋯𝒙𝑖
(𝑀); 𝚯̂(𝑗−1)). 

For numerical modalities with 𝑚 =  1,… ,𝑀1, we can derive 𝐸(𝜼𝑖
(𝑚)
|𝒙𝑖
(𝑚), 𝑠𝑖,𝑘 =

1; 𝚯̂(𝑗−1))  and 𝐸 (𝜼𝑖
(𝑚)
𝜼𝑖
(𝑚)𝑇

|𝒙𝑖
(𝑚), 𝑠𝑖,𝑘 = 1; 𝚯̂(𝑗−1))  as shown in A.1. For categorical 

modalities with 𝑚 =  𝑀1 + 1,  … ,  𝑀1 +𝑀2, these expectations can be approximated by 

GH Quadrature following a similar approach to the equation (2.16). Last, based on Bayes’ 

Theorem, the derivation of 𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖
(1),⋯𝒙𝑖

(𝑀); 𝚯̂(𝑗−1))  relies on the term 
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𝑓(𝒙𝑖
(𝑚)|𝑠𝑖,𝑘 = 1; 𝚯̂(𝑗−1)) for  𝑚 =  1,… ,𝑀. For numerical modalities with 𝑚 =  1, … ,𝑀1, 

this term is the probability density function of a Gaussian distribution; For categorical 

modalities with 𝑚 =  𝑀1 + 1,  … ,  𝑀1 +𝑀2 , this term can be approximated based on 

Proposition 2.2.                      

   ∎ 

      A3. Deriving the expectation 𝜑4 in function (2.10) 

From the function (2.10), we have 𝜑4(𝒘) =

−∑ 𝐸
𝒔𝑖|𝒙𝑖

(1)
,⋯𝒙𝑖

(𝑀)
; 𝚯̂(𝑗−1) 

[log(𝑓(𝒔𝑖; 𝚯4))]
𝑁
𝑖=1 = −∑ ∑ log (𝑤𝑘)𝑓(𝑠𝑖,𝑘 =

𝐾
𝑘=1

𝑁
𝑖=1

1|𝒙𝑖
(1), ⋯𝒙𝑖

(𝑀); 𝚯̂(𝑗−1)) , in which the GH approximation of 

𝑓(𝑠𝑖,𝑘 = 1|𝒙𝑖
(1),⋯𝒙𝑖

(𝑀); 𝚯̂(𝑗−1)) is given by Proposition 2.2. 

                                                                        ∎ 

B. Proof of Proposition 2.1 

Proof: We denote the GH approximation in Definition 2.1 as 𝐺𝐻(𝑔) ≜

∑𝑇𝑡1=1 ⋯∑
𝑇
𝑡𝑄=1

𝜔𝑡1⋯𝜔𝑡𝑄𝑔(𝒛𝑡)  and the approximation error can be written as 

𝑒𝑟𝑟𝑜𝑟(𝑔) = ∫
𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑔(𝒛)𝑑𝒛 − 𝐺𝐻(𝑔) . Authors (Hilderbrand, 1987) proved that 

𝑒𝑟𝑟𝑜𝑟(𝑔) =
𝑇!√𝜋

2𝑇(2𝑇)!
𝑔(2𝑇)(𝜉) for 𝜉 ∈ ℝ𝑄.  

By the Weierstrass Approximation Theorem (Stone, 1948), there exists a 

polynomial function 𝑝(𝒛) with the order of 𝑇′such that |𝑔(𝒛) − 𝑝(𝒛)| < 𝜀 for every 𝜀 > 0 

and 𝒛 ∈ 𝑺, where 𝑺 is an arbitrary closed subset of ℝ𝑄. Accordingly, the error term can be 

rewritten as the sum of three bounded terms as follows:  

𝑒𝑟𝑟𝑜𝑟(𝑔) = (∫
𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑔(𝒛)𝑑𝒛 − ∫

𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑝(𝒛)𝑑𝒛) + (∫

𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑝(𝒛)𝑑𝒛 − 𝐺𝐻(𝑝)) + (𝐺𝐻(𝑝) − 𝐺𝐻(𝑔)).  (B.1)  
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The first term in (B.1) is bounded, because we have 

|∫𝑺 𝑒𝑥𝑝{−𝒛
𝑇𝒛}𝑔(𝒛)𝑑𝒛 − ∫𝑺 𝑒𝑥𝑝{−𝒛

𝑇𝒛}𝑝(𝒛)𝑑𝒛| ≤ ∫𝑺 𝑒𝑥𝑝{−𝒛
𝑇𝒛}|𝑔(𝒛) − 𝑝(𝒛)|𝑑𝒛 < 𝜀 ∫𝑺 𝑒𝑥𝑝{−𝒛

𝑇𝒛}𝑑𝒛.     (B.2) 

The second term is zero for a sufficiently large 𝑇 . Specifically, the second term is 

equivalent to the GH approximation error of the polynomial function 𝑝(𝒛) with the order 

of 𝑇′ , i.e.,  𝑒𝑟𝑟𝑜𝑟(𝑝) = ∫
𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑝(𝒛)𝑑𝒛 − 𝐺𝐻(𝑝). Therefore, if the order of the 

Hermite polynomial, i.e., 𝑇, is sufficiently larger than 𝑇′such that 2𝑇 ≥ 𝑇′, we have 

 𝑒𝑟𝑟𝑜𝑟(𝑝) =
𝑇!√𝜋

2𝑇(2𝑇)!
𝑝(2𝑇)(𝜉) = 0.                                          (B.3) 

Last, it is straightforward to show the third term is bounded by a small quantity. That is, 

|𝐺𝐻(𝑝) − 𝐺𝐻(𝑔)| = ∑𝑇𝑡1=1 ⋯∑
𝑇
𝑡𝑄=1

𝜔𝑡1⋯𝜔𝑡𝑄|𝑝(𝒛𝑡) − 𝑔(𝒛𝑡)| <      ∑
𝑇
𝑡1=1

⋯∑𝑇𝑡𝑄=1 𝜔𝑡1⋯𝜔𝑡𝑄𝜀.     (B.4) 

We substitute (B.2) and (B.3) into (B.1) and have |𝑒𝑟𝑟𝑜𝑟(𝑔)| < 𝜀 (∫
𝑺
𝑒𝑥𝑝{−𝒛𝑇𝒛}𝑑𝒛 +

∑𝑇𝑡1=1 ⋯∑
𝑇
𝑡𝑄=1

𝜔𝑡1⋯𝜔𝑡𝑄). Since  𝜀 > 0 can be arbitrarily small, we can conclude that 

the GH error is zero for a sufficiently large 𝑇.  

                                                                                                                                     ∎ 

C. Proof of Proposition 2.2 

Proof: Following Bayes’ Theorem, we have 

𝑓(𝑠𝑖𝑘 = 1|𝒙𝑖
(𝑚)
;  𝚯̂(𝑗)) =

𝑓(𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗))𝑓(𝑠𝑖𝑘 = 1; 𝚯̂
(𝑗))

∑ 𝑓(𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂(𝑗))𝑓(𝑠𝑖𝑘 = 1; 𝚯̂(𝑗))𝐾

𝑘=1

 

including a non-analytical term  𝑓(𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂(𝑗)) that can be rewritten as 

𝑓(𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂(𝑗)) = ∫𝑓(𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗))𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯̂(𝑗))𝑑𝜼𝑖

(𝑚)
.   
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Because 𝜼𝑖
(𝑚)
|(𝑠𝑖𝑘 = 1; 𝚯̂(𝑗)) follows a multivariate Gaussian distribution, i.e., 

𝑁(𝝁(𝑚,𝐾), 𝚺(𝑚)), we have   

∫𝑓 (𝜼𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗)) 𝑓 (𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯̂(𝑗)) 𝑑𝜼𝑖

(𝑚)
 =

∫ℝ𝑄 (2𝜋)
−𝑄/2|𝚺(𝑚,𝑘)|−1/2exp{−

(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))𝑇𝚺(𝑚,𝑘)
−1
(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))

2
}𝑓 (𝒙𝑖

(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯̂(𝑗)) 𝑑𝜼𝑖

(𝑚)
 . 

Then denote 𝜼̃𝑖
(𝑚)𝑇

𝜼̃𝑖
(𝑚)

=
(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))𝑇𝚺(𝑚,𝑘)
−1
(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))

2
 such that 𝜼𝑖

(𝑚)
=

√2𝚺(𝑚,𝑘)
1

2𝜼̃𝑖
(𝑚)

+ 𝝁(𝑚,𝐾), we have  

∫
ℝ𝑄
(2𝜋)−

𝑄
2 |𝚺(𝑚,𝑘)|−

1
2exp {−

(𝜼𝑖
(𝑚) − 𝝁(𝑚,𝐾))𝑇𝚺(𝑚,𝑘)

−1
(𝜼𝑖

(𝑚) − 𝝁(𝑚,𝐾))

2
} 𝑓(𝒙𝑖

(𝑚)|𝜼𝑖
(𝑚);  𝚯̂(𝑗))𝑑𝜼𝑖

(𝑚)
 

= (𝜋)−
𝑄

2 ∫
ℝ𝑄
exp {−𝜼̃𝑖

(𝑚)𝑇
𝜼̃𝑖
(𝑚)
} 𝑓 (𝒙𝑖

(𝑚)|√2𝚺(𝑚,𝑘)
1

2𝜼̃𝑖
(𝑚)

+ 𝝁(𝑚,𝐾);  𝚯̂(𝑗)) 𝑑𝜼̃𝑖
(𝑚)
.             (C.1) 

Applying the GH approximation to (C.1), the non-analytical term  𝑓(𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂(𝑗)) 

can be explicitly approximated as follows:  

𝑓 (𝒙𝑖
(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗)) = (𝜋)−𝑄/2∑ …𝑇
𝑡1=1

∑ 𝑤𝑡1 …𝑤𝑡𝑄𝑓 (𝒙𝑖
(𝑚)
|√2𝚺(𝑚,𝑘)

1

2𝜼̃𝑖,𝑡
(𝑚) +𝑇

𝑡𝑄=1

𝝁(𝑚,𝐾);  𝚯̂(𝑗)), 

where 𝜼̃
𝑖,𝑡

(𝑚) = (𝜂̃
𝑖,𝑡1

(𝑚),⋯ , 𝜂̃
𝑖,𝑡𝑄

(𝑚)
) are the roots of the Hermite polynomial of order 𝑇, 𝑇 is the 

number of quadrature points of 𝜼𝑖,𝑡𝑞
(𝑚), and the weights are given by 𝜔𝑡𝑞 =

2𝑇+1T!√𝜋

[𝐻𝑇+1(𝜂̃𝑖,𝑡𝑞
(𝑚)
)]2
.        

                             ∎ 

D. Proof of Proposition 2.3 

Proof: Following the similar proof for Proposition 2.2, because 𝜼𝑖
(𝑚)
|(𝑠𝑖𝑘 =

1; 𝚯̂(𝑗)) follows a multivariate Gaussian distribution, i.e., 𝑁(𝝁(𝑚,𝐾), 𝚺(𝑚,𝑘)), the left side 

of the equation (2.25) can be rewritten as    
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∫ (𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝
(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚)) 𝑓(𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗))) 𝑑𝜼𝑖
(𝑚)

⬚

𝜼

 

= ∫
ℝ𝑄
(2𝜋)−𝑄/2|𝚺(𝑚,𝑘)|−1/2exp{−

(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))𝑇𝚺(𝑚,𝑘)
−1
(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))

2
}𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝

(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚)) 𝑑𝜼𝑖

(𝑚)
. 

We denote 𝜼̃𝑖
(𝑚)𝑇

𝜼̃𝑖
(𝑚)

=
(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))𝑇𝚺(𝑚,𝑘)
−1
(𝜼𝑖
(𝑚)

−𝝁(𝑚,𝐾))

2
 such that 𝜼𝑖

(𝑚)
=

√2𝚺(𝑚,𝑘)
1

2𝜼̃𝑖
(𝑚)

+ 𝝁(𝑚,𝐾), and then have  

∫ (𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝
(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚)) 𝑓(𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗)))𝑑𝜼𝑖
(𝑚)

⬚

𝜼

 

= (𝜋)−
𝑄
2 ∫

ℝ𝑄
exp {−𝜼̃𝑖

(𝑚)𝑇
𝜼̃𝑖
(𝑚)
} log (𝑓 (𝒙𝑖

(𝑚)|√2𝚺(𝑚,𝑘)
1
2𝜼̃𝑖

(𝑚)
+ 𝝁(𝑚,𝐾);  𝚯2𝑚))𝑑𝜼̃𝑖

(𝑚)
. 

Applying the GH approximation in Definitaion 2.1, we have the approximation as  

∫ (𝑙𝑜𝑔 (𝑓(𝒙𝑖𝑝
(𝑚)
|𝜼𝑖
(𝑚)
;  𝚯2𝑚)) 𝑓(𝜼𝑖

(𝑚)
|𝑠𝑖𝑘 = 1; 𝚯̂

(𝑗)))𝑑𝜼𝑖
(𝑚)

⬚

𝜼

 

≈ (𝜋)−𝑄/2∑ …𝑇
𝑡1=1

∑ 𝑤𝑡1 …𝑤𝑡𝑄
𝑇
𝑡𝑄=1

𝑙𝑜𝑔 (𝑓 (𝒙𝑖
(𝑚)
|√2𝚺(𝑚,𝑘)

1

2𝜼̃𝑖,𝑡
(𝑚) + 𝝁(𝑚,𝐾);  𝚯2𝑚)), 

where 𝜼𝑖,𝑡
(𝑚) = (𝜂̃

𝑖,𝑡1

(𝑚),⋯ , 𝜂̃
𝑖,𝑡𝑄

(𝑚)
) are the roots of the Hermite polynomial of order 𝑇, 𝑇 is the 

number of quadrature points of 𝜂̃
𝑖,𝑡𝑞

(𝑚), and the weights are given by 𝜔𝑡𝑞 =
2𝑇+1T!√𝜋

[𝐻𝑇+1(𝜂̃𝑖,𝑡𝑞
(𝑚)
)]2
.      

                                          ∎ 

E. Proof of Theorem 2.1 

Proof: Since∇𝜑(𝒍|𝐃) is Lipschitz continuous, there exists 𝜃 ∈ ℝ such that 

‖∇𝜑(𝒍|𝐃) − ∇𝜑(𝒍′|𝐃)‖ ≤ 𝜃‖𝒍 − 𝒍′‖, ∀𝒍, 𝒍′.  Therefore,𝑔(𝒍) =
𝜃

2
𝒍𝑇𝒍 − 𝜑(𝒍|𝐃) is a convex 

function, because ∇2𝜑(𝒍|𝐃) ≼ 𝜃𝐈. By the first order condition of convex function, we 

have𝑔(𝒍) ≥ 𝑔(𝒍′) + ∇𝑔(𝒍′)𝑇(𝒍 − 𝒍′), which is 
𝜃

2
𝒍𝑇𝒍 − 𝜑(𝒍|𝐃) ≥

𝜃

2
𝒍′
𝑇
𝒍′ − 𝜑(𝒍′|𝐃) +
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(𝜃𝒍′ − ∇𝜑(𝒍′|𝐃))
𝑇
(𝒍 − 𝒍′). By changing the order and regrouping items, we have the 

following inequality 

 𝜑(𝒍|𝐃) ≤ 𝜑(𝒍′|𝐃) + ∇𝜑(𝒍′|𝐃)𝑇(𝒍 − 𝒍′) +
𝜃

2
‖𝒍 − 𝒍′‖2.    (E.1) 

Inequality (E.1) is called the “quadratic bound property” of a function with Lipschitz 

continuous gradient. 

 Define the surrogate function of MM algorithm as 𝑄(𝒍|𝐃) = 𝜑(𝒍′|𝐃) +

∇𝜑(𝒍′|𝐃)𝑇(𝒍 − 𝒍′) +
𝜃

2
‖𝒍 − 𝒍′‖2 + 𝜆‖𝒍‖2. Due to the subgradient optimality condition, 

i.e., 𝟎 ∈ ∇𝑄(𝒍|𝐃), we have the following solution 

𝒍̃ = argmin
𝒍

𝑄(𝒍|𝐃) =

{

1

𝜃
(−∇𝜑(𝒍′|𝐃) + 𝜃𝒍′) (1 −

𝜆

‖−∇𝜑(𝒍′|𝐃)+𝜃𝒍′‖2
) if ‖−∇𝜑(𝒍′|𝐃) + 𝜃𝒍′‖2 > 𝜆

𝟎 if ‖−∇𝜑(𝒍′|𝐃) + 𝜃𝒍′‖2 ≤ 𝜆
. 

To prove convergence of MM algorithm, we will first show the strict decent 

property in each iteration. In a certain iteration that updates 𝒍 by 𝒍̃, we have  

𝜑(𝒍̃|𝐃) + 𝜆‖𝒍̃‖
2
≤ 𝑄(𝒍̃|𝐃) ≤ 𝑄(𝒍′|𝐃) = 𝜑(𝒍′|𝐃) + 𝜆‖𝒍′‖2. 

The first inequality is due to the quadratic bound property (E.1) of 𝜑(𝒍|𝐃). Note that the 

inequality strictly holds unless 𝒍̃ = 𝒍′. The second inequality is due to the optimality of 𝒍̃ 

with respect to 𝑄(𝒍|𝐃), and the third equality is based on the definition of 𝑄(𝒍|𝐃). Thus, 

within each iteration beginning with 𝒍′, the objective function will decrease if we update 𝒍′ 

with 𝒍̃.  



117 

 

Therefore, if we have 𝒍′ = 𝒍̃  in any iteration, we have 

{
∇𝜑(𝒍′|𝐃) + 𝜆

𝒍′

‖𝒍′‖2
= 𝟎 if 𝒍′ ≠ 𝟎

‖−∇𝜑(𝒍′|𝐃)‖2 ≤ 𝜆 if 𝒍′ = 𝟎
, which is the stationarity of the KKT condition. In 

other words, if the objective function remains unchanged, i.e., 𝒍′ = 𝒍̃, it indicates that the 

algorithm has converged to the optimal solution.                     

∎ 

F. Proof of Proposition 2.4 

Proof: We will use 𝜑2  in (2.29) as an example to show that the objective function 

in (2.29) is joint convex with a Lipschitz continuous gradient with respect to {𝐋(𝑚), 𝐁(𝑚) } 

for 𝑚 =  𝑀1 + 1,  … ,  𝑀1 +𝑀2, respectively. Therefore, the optimization problem in (2.29) 

can be efficiently optimized by the MM algorithm in Theorem 2.1. Similar discussions 

follow for (2.28) and (2.30).  

Since the optimization problem in (2.29) is separable for 𝑚 =  𝑀1 + 1,  … ,  𝑀1 +

𝑀2, we need to provide proofs for only the sub-optimization problem with the objective 

function 𝜑2𝑚 = ∑ 𝐸
𝜼𝑖
(𝑚)

|𝒙𝑖
(𝑚)

; 𝚯̂(𝑗−1) 
[log (𝑓(𝒙𝑖

(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚)))]𝑁
𝑖=1 + 𝜆1∑ ‖𝒍𝑝

(𝑚)‖
2

𝑃
𝑝=1 with 

respect to {𝜶(𝑚), 𝐋(𝑚), 𝐁(𝑚)}. Based on the equation (2.4), the feasible region of 𝜑2𝑚 is 

obviously convex with respect to {𝜶(𝑚), 𝐋(𝑚), 𝐁(𝑚)}. Next, we can prove the objective 

function 𝜑2𝑚  is convex. The 𝑙-21 norm ∑ ‖𝒍𝑝
(𝑚)‖

2

𝑃
𝑝=1  is clearly convex with respect to 

𝐋(𝑚) (Boyd et al., 2004). Moreover, because expectation preserves convexity, we only need 

to prove the term log (𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚))) within the expectation is convex with respect 
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to {𝜶(𝑚), 𝐋(𝑚), 𝐁(𝑚)}. Based on the model in (2.4), this term is the log-likelihood function 

of the ordinal logistic regression that is proven to be convex (Kim, 2004).  

Next, we prove that ∑ 𝐸
𝜼
𝑖
(𝑚)|𝒙𝑖

(𝑚); 𝚯̂
(𝑗−1)

 
[log(𝑓 (𝒙𝑖

(𝑚)|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚)
))]𝑁

𝑖=1  has the Lipschitz 

continuous gradient with respect to {𝐋(𝑚), 𝐁(𝑚) }. To facilitate later discussion, we first 

prove that, given a function ℎ(𝒙, 𝒚) which is Lipschitz continuous with respect to 𝒙, we 

have 𝐻(𝒙) = ∫  ℎ(𝒙, 𝒚)𝑔(𝒚)𝑑𝒚
⬚

𝒚∈𝒀
 is also Lipschitz continuous, in which 𝑔(𝒚)  is the 

probability density function of 𝒚. Based on the definition of the Lipschitz continuity, 

∀ 𝒙1, 𝒙2 ∈ 𝑿 , there exists a positive constant 𝐾  such that  |ℎ(𝒙1, 𝒚) − ℎ(𝒙2, 𝒚)| ≤

𝐾|𝒙1 − 𝒙2|. Therefore, considering the sum rule of integration, we have  

|𝐻(𝒙1) − 𝐻(𝒙2)| = |∫  [ℎ(𝒙1, 𝒚) − ℎ(𝒙2, 𝒚)]𝑔(𝒚)𝑑𝒚
⬚

𝒚∈𝒀

| 

        ≤ ∫  |ℎ(𝒙1, 𝒚) − ℎ(𝒙2, 𝒚)|𝑔(𝒚)𝑑𝒚
⬚

𝒚∈𝒀
 

             ≤ ∫  𝐾|𝒙1 − 𝒙2|𝑔(𝒚)𝑑𝒚
⬚

𝒚∈𝒀
 

                       = 𝐾|𝒙1 − 𝒙2| ∫  𝑔(𝒚)𝑑𝒚
⬚

𝒚∈𝒀
= 𝐾|𝒙1 − 𝒙2|. 

In other words, if ℎ(𝒙, 𝒚) is Lipschitz continuous with respect to 𝒙, we have proved that 

𝐻(𝒙)  is also Lipschitz continuous. Consequently, if we can prove that 

∇{𝐋(𝑚),𝐁(𝑚) } log (𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚))) is Lipschitz continuous with respect to {𝐋(𝑚), 𝐁(𝑚) }, 

it indicates that the term ∇{𝐋(𝑚) ,𝐁(𝑚) }∑ 𝐸
𝜼𝑖
(𝑚)

|𝒙𝑖
(𝑚)

; 𝚯̂(𝑗−1) 
[log (𝑓(𝒙𝑖

(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚)))]𝑁
𝑖=1  is 

Lipschitz continuous.  
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Last, According to the statement in page 19 of Wheeden et al. (2015), if 

∇{𝐋(𝑚),𝐁(𝑚) } log (𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚); 𝚯2𝑚))  has a continuous derivative with respect to 

{𝐋(𝑚), 𝐁(𝑚) }, then ∇{𝐋(𝑚),𝐁(𝑚) } log (𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚); 𝚯2𝑚)) is Lipschitz continuous. By 

checking the property of second derivates in Kim (2004), we have that 

∇{𝐋(𝑚),𝐁(𝑚) } log (𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚); 𝚯2𝑚))  is continuous differentiable that implies 

∇{𝐋(𝑚),𝐁(𝑚) } log (𝑓(𝒙𝑖
(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚); 𝚯2𝑚))  is Lipschitz continuous. Therefore,  

∑ 𝐸
𝜼𝑖
(𝑚)

|𝒙𝑖
(𝑚)

; 𝚯̂(𝑗−1) 
[log (𝑓(𝒙𝑖

(𝑚)
|𝜼𝑖
(𝑚), 𝒛𝑖

(𝑚)))]𝑁
𝑖=1  has the Lipschitz continuous gradient 

with respect to {𝐋(𝑚), 𝐁(𝑚) }.     

                   ∎ 

 

G. Proof of Theorem 3.1 

Proof: For simplicity, we define 𝐛̂𝑝 ≜ 𝑣𝑒𝑐(𝐁̂𝑝), then we have 𝑣𝑒𝑐(𝐁̃𝑝,𝑘
∗  ) = 𝐛̂𝑝,𝑘

∗ . 

Similarly, we can rewrite the true parameter as 𝑣𝑒𝑐(𝐁𝑝,0) = 𝐛𝑝,0. First, we prove that 

√𝑁(𝐛̂𝑝 − 𝐛𝑝,0) = 𝑉(𝐛𝑝,0)  given 𝐾 ≪ √𝑁 . Specifically, 𝔼(𝑉(𝐛𝑝,0)) = 𝟎 , 

𝑐𝑜𝑣(𝑉(𝐛𝑝,0)) = 𝚺𝑝, where 𝚺𝑝 = (∑
𝑁𝑘

𝑁
𝚺𝑝,𝑘
−1𝐾

𝑘=1 )
−1

 and 𝚺𝑝,𝑘 = 𝑁𝑘𝑐𝑜𝑣(𝐛̂𝑝,𝑘
∗ ). 

Before analyzing the asymptotic property of 𝐛̂𝑝, we shall prove 𝚺𝑝 above is the 

asymptotic covariance matrix of 𝑣𝑒𝑐(𝐁̃𝑝
∗ ). 

It is clear that 𝚺𝑝,𝑘  is the asymptotic covariance matrix of 𝐛̂𝑝,𝑘
∗  , which means 

𝔼(𝑁𝑘
−1∑ 𝑙𝑛,𝑝

′′ ( 𝐛̂𝑝,𝑘
∗ )⬚

𝑛∈𝑆𝑘
) = 𝔼(𝑁𝑘

−1∑ 𝑙𝑛,𝑝
′′ ( 𝐛𝑝,0)

⬚
𝑛∈𝑆𝑘

) ≈ 𝚺𝑝,𝑘
−1  . The first equality comes 

from 𝐛̂𝑝,𝑘
∗  is an unbiased estimator of 𝐛𝑝,0.  Therefore, 
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𝚺𝑝
−1 = ∑

𝑁𝑘

𝑁
𝚺𝑝,𝑘
−1𝐾

𝑘=1 ≈ ∑
𝑁𝑘

𝑁
𝔼(𝑁𝑘

−1∑ 𝑙𝑛,𝑝
′′ ( 𝐛𝑝,0)

⬚
𝑛∈𝑆𝑘

)𝐾
𝑘=1 = 𝔼(𝑁−1∑ ∑ 𝑙𝑛,𝑝

′′ ( 𝐛𝑝,0)
⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1 ). 

The last equality above comes from the samples are i.i.d across different local servers. It 

implies 𝚺𝑝
−1 ≈ 𝔼(𝑁−1∑ ∑ 𝑙𝑛,𝑝

′′ ( 𝐛𝑝,0)
⬚
𝑛∈𝑆𝑘

𝐾
𝑘=1 ) = 𝔼(𝑁−1∑ ∑ 𝑙𝑛,𝑝

′′ ( 𝑣𝑒𝑐(𝐁̃𝑝
∗ ))⬚

𝑛∈𝑆𝑘
𝐾
𝑘=1 ) , 

which means 𝚺𝑝 is the asymptotic covariance matrix of 𝑣𝑒𝑐(𝐁̃𝑝
∗ ). 

 Note that 𝐛̂𝑝 − 𝐛𝑝,0 = (∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 )
−1

(∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 (𝐛̂𝑝,𝑘
∗ − 𝐛𝑝,0)). By 

Slutsky’s Theorem, it suffices to prove the following two statements. 

∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 →𝑝 𝚺𝑝
−1,      (G.1) 

√𝑁 (∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1(𝐛̂𝑝,𝑘

∗ − 𝐛𝑝,0)
𝐾
𝑘=1 ) = 𝑉′(𝐛𝑝,0),    (G.2) 

in which 𝑐𝑜𝑣 (𝑉′(𝐛𝑝,0)) = 𝚺𝑝
−1, and  𝔼(𝑉′(𝐛𝑝,0)) = 𝟎. 

As defined in equation (3.13), 𝚺̂𝑝,𝑘 is the estimator of  𝚺𝑝,𝑘. In addition, 𝚺̂𝑝,𝑘
−1 −

𝚺𝑝,𝑘
−1 = 𝑂𝑝 (𝑁𝑘

−
1

2) . Then, we have   

∑
𝑁𝑘
𝑁
 𝚺̂𝑝,𝑘
−1

𝐾

𝑘=1

− 𝚺𝑝
−1 =∑

𝑁𝑘
𝑁
(𝚺̂𝑝,𝑘

−1 − 𝚺𝑝,𝑘
−1) = 𝑂𝑝 (𝑁

−
1
2)  = 𝑜𝑝(1)

𝐾

𝑘=1

. 

In other words, this proves that ∑
𝑁𝑘

𝑁
 𝚺̂𝑝,𝑘
−1𝐾

𝑘=1 →𝑝 𝚺𝑝
−1 as shown in (G.1). Note that 𝑂𝑝(∙) is 

a shorthand means of characterizing the convergence in probability of a set of random 

variables, as well as 𝑜𝑝(∙) refers to convergence in probability towards zero.  

Recall 𝐛̂𝑝,𝑘 is the minimizer of ∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

. Since 
𝜕2∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝𝑑𝐛𝑝
𝑇 =

2𝐽𝜂𝜂
𝑇⨂𝐙𝑝,𝑘

𝑇𝐙𝑝,𝑘, then  ∇𝑖 ∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

= 0 for 𝑖 ∈ {3, 4,⋯ ,∞}. By applying Taylor’s 

expansion on 
𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
 at 𝐛𝑝,0, we have  
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𝟎 =
𝜕 ∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛̂𝑝,𝑘

∗

=
𝜕 ∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

+
𝜕2∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝𝑑𝐛𝑝
𝑇 |

𝐛𝑝=𝐛𝑝,0

(𝐛̂𝑝,𝑘
∗ − 𝐛𝑝,0). (G.3)  

By standard arguments, 

𝜕2∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝𝑑𝐛𝑝
𝑇 |

𝐛𝑝=𝐛𝑝,0

= 𝔼(
𝜕2∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝𝑑𝐛𝑝
𝑇 |

𝐛𝑝=𝐛𝑝,0

) + 𝑂𝑝 (𝑁𝑘

1
2) 

     = 𝑁𝑘𝚺𝑝,𝑘
−1 + 𝑂𝑝 (𝑁𝑘

1

2). 

Equation (G.3) can be rewritten as 

𝟎 =
𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

+ (𝑁𝑘𝚺𝑝,𝑘
−1 + 𝑂𝑝 (𝑁𝑘

1

2)) (𝐛̂𝑝,𝑘
∗ − 𝐛𝑝,0). 

Furthermore, given that  𝐛̂𝑝,𝑘
∗ − 𝐛𝑝,0 = 𝑂𝑝 (𝑁𝑘

−
1

2), equation (G.3) implies 

𝐛̂𝑝,𝑘
∗ − 𝐛𝑝,0 = −𝑁𝑘

−1𝚺𝑝,𝑘
𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

− 𝑂𝑝(𝑁𝑘
−1). 

Therefore, given  𝚺̂𝑝,𝑘
−1 − 𝚺𝑝,𝑘

−1 = 𝑂𝑝 (𝑁𝑘
−
1

2), we have 

√𝑁(∑
𝑁𝑘
𝑁
𝚺̂𝑝,𝑘
−1 (𝐛̂𝑝,𝑘 − 𝐛𝑝,0)

𝐾

𝑘=1

)  

= √𝑁 (∑
𝑁𝑘
𝑁
𝚺𝑝,𝑘
−1 (𝐛̂𝑝,𝑘

∗ − 𝐛𝑝,0)

𝐾

𝑘=1

) + √𝑁(∑
𝑁𝑘
𝑁
(𝚺̂𝑝,𝑘

−1 − 𝚺𝑝,𝑘
−1 )(𝐛̂𝑝,𝑘

∗ − 𝐛𝑝,0)

𝐾

𝑘=1

)

= √𝑁(∑
𝑁𝑘
𝑁
𝚺𝑝,𝑘
−1 (𝐛̂𝑝,𝑘

∗ − 𝐛𝑝,0)

𝐾

𝑘=1

) + 𝑂𝑝 (
𝐾

√𝑁
)

= √𝑁(∑
𝑁𝑘
𝑁
𝚺𝑝,𝑘
−1 (−𝑁𝑘

−1𝚺𝑝,𝑘
𝜕 ∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|

𝐛𝑝=𝐛𝑝,0

− 𝑂𝑝(𝑁𝑘
−1))

𝐾

𝑘=1

)

+ 𝑂𝑝 (
𝐾

√𝑁
) 
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                          = −
1

√𝑁
∑

𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

𝐾
𝑘=1 + 𝑂𝑝 (

𝐾

√𝑁
).       (G.4) 

As we assume 𝐾 ≪ √𝑁, 𝑂𝑝 (
𝐾

√𝑁
) = 𝑜𝑝(1). Define 

𝑉′(𝐛𝑝,0) = −
1

√𝑁
∑

𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

𝐾
𝑘=1 . 

We have   

𝔼(𝑉′(𝐛𝑝,0)) = 𝟎,      (G.5) 

and   

𝑐𝑜𝑣 (𝑉′(𝐛𝑝,0)) =
1

𝑁
∑𝑐𝑜𝑣 (

𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

)

𝐾

𝑘=1

 

=
1

𝑁
∑ 𝔼(

𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

(
𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)

⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

)

𝑇

)𝐾
𝑘=1 . 

Since equation (3.10) is a minimization problem, the corresponding information equality 

is  

𝔼 [(
𝜕(−𝑙𝑛,𝑝(𝐛𝑝))

𝜕𝐛𝑝
)(

𝜕(−𝑙𝑛,𝑝(𝐛𝑝))

𝜕𝐛𝑝
)

𝑇

] = −𝔼 [
𝜕2(−𝑙𝑛,𝑝(𝐛𝑝))

𝜕𝐛𝑝𝜕𝐛𝑝
𝑇 ], 

which indicates that 𝔼 [(
𝜕𝑙𝑛,𝑝(𝐛𝑝)

𝜕𝐛𝑝
) (

𝜕𝑙𝑛,𝑝(𝐛𝑝)

𝜕𝐛𝑝
)
𝑇

] = 𝔼 [
𝜕2𝑙𝑛,𝑝(𝐛𝑝)

𝜕𝐛𝑝𝜕𝐛𝑝
𝑇 ]. Thus,  

 𝑐𝑜𝑣 (𝑉′(𝐛𝑝,0)) =
1

𝑁
∑ 𝔼(

𝜕2∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝𝑑𝐛𝑝
𝑇 |

𝐛𝑝=𝐛𝑝,0

) = ∑
𝑁𝑘

𝑁
 𝚺𝑝,𝑘
−1𝐾

𝑘=1
𝐾
𝑘=1 = 𝚺𝑝

−1.  (G.6) 

For a short summary, condition on 𝐾 ≪ √𝑁, equation (G.4) gives  
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√𝑁 (∑
𝑁𝑘

𝑁
𝚺̂𝑝,𝑘
−1(𝐛̂𝑝,𝑘 − 𝐛𝑝,0)

𝐾
𝑘=1 ) = −

1

√𝑁
∑

𝜕∑ 𝑙𝑛,𝑝(𝐛𝑝)
⬚
𝑛∈𝑆𝑘

𝜕𝐛𝑝
|
𝐛𝑝=𝐛𝑝,0

𝐾
𝑘=1 = 𝑉′(𝐛𝑝,0). 

Equation (G.5) gives 𝔼(𝑉′(𝐛𝑝,0)) = 𝟎, and equation (G.6) gives 𝑐𝑜𝑣 (𝑉′(𝐛𝑝,0)) = 𝚺𝑝
−1. 

Together with (G.4, G.5, G.6), we can prove (G.2).  

By the Central Limit Theorem, we have 𝑉′(𝐛𝑝,0) →𝑑 𝑁(𝟎, 𝚺𝑝
−1).  By Slutsky’s 

Theorem, we have √𝑁(𝐛̂𝑝 − 𝐛𝑝,0) =
𝑉′(𝐛𝑝,0)

𝚺𝑝
−1  , where 𝚺𝑝 = (∑

𝑁𝑘

𝑁
𝚺𝑝,𝑘
−1𝐾

𝑘=1 )
−1

. 

Thus, we have √𝑁(𝐛̂𝑝 − 𝐛𝑝,0) →𝑑 𝑁(𝟎, 𝚺𝑝). This indicates that the proposed LSA 

estimator 𝐁̂𝑝 achieves the same asymptotic normality as the global estimator 𝐁̃𝑝
∗ . 

∎ 
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H. Pseudo code for the fed-GB-Average in Step 1 

Table 14: Pseudo code for the fed-GB-Average on local and central servers in Step 1 

Step 1: Iterative update to obtain the global aggregator {𝐁̂𝑝
(𝜔)}

𝑝=1

𝑃

 for all base learners 

Initialization: 𝑛1= 0; 𝐁̂𝑝
(0)

 for 𝑝 = 1,… , 𝑃     

Iterate until 𝑛1 = 𝑁1 

          Local servers with parallel computing for 𝑘 = 1,… , 𝐾 

                     Initialization: 𝑛2 =  0; 𝐁̂𝑝,𝑘
(0)

 = 𝐁̂𝑝
(𝑛1) for 𝑝 = 1,… , 𝑃     

                     Iterate until 𝑛2 = 𝑁2 

• Compute local step length 𝜂𝑘 

• 𝐁̂𝑝,𝑘
(𝑛2+1) = 𝐁̂𝑝,𝑘

(𝑛2) − 𝜂𝑘𝑙
′
𝑛,𝑝 (𝐁̂𝑝,𝑘

(𝑛2))  for 𝑝 = 1,… , 𝑃   

• 𝑛2 = 𝑛2 + 1  

                     Send local parameters 𝐁̂𝑝,𝑘
(𝑁2) to the central server                

           Central server 

• Receive the local parameters {𝐁̂𝑝,𝑘
(𝑁2) }

𝑘=1

𝐾

for 𝑝 = 1,… , 𝑃   

• Aggregate local parameters by 𝐁̂𝑝
(𝑛1) =

1

𝑁
∑ 𝑁𝑘𝐁̂𝑝,𝑘

(𝑁2)𝐾
𝑘=1  for 𝑝 =

1, … , 𝑃   

• Send parameters 𝐁̂𝑝
(𝑛1) to the local servers 

• 𝑛1 = 𝑛1 + 1  

Send the aggregated parameters {𝐁̂𝑝
(𝜔)}

𝑝=1

𝑃

= {𝐁̂𝑝
(𝑁1)}

𝑝=1

𝑃

 to the local servers 

 

I. Lemma 4.3 and Proof 

Lemma 4.3 Given a constant 𝑐 > 0  and vector 𝒙 ∈ ℝ𝑑~𝒩(𝟎, 𝚺). Then the following 

inequality holds: 

ℙ[‖𝒙‖ > 𝑐] ≤ 2exp (−
𝑐2

2tr(𝚺)
). 

Proof of Lemma 4.3: 
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Let 𝚪𝚲𝚪𝑇  be the eigen decomposition of 𝚺 . Then ‖𝒙‖2 =𝑑 ‖𝚲
1/2𝒚‖

2
, where 

𝒚~𝒩(𝟎, 𝐈𝑑×𝑑). For all 𝑐 > 0 and 𝑠 > 0, we have  

 ℙ[‖𝒙‖2 > 𝑐] = ℙ [‖𝚲1/2𝒚‖
2
> 𝑐] 

              ≤ ℙ[‖𝚲1/2𝒚‖
1
> 𝑐] 

       = ℙ[exp(𝑠 ∑ √𝜆𝑖|𝑦𝑖|
𝑑
𝑖=1 ) > exp(𝑠𝑐)] 

       ≤ exp(−𝑠𝑐) 𝔼[exp(𝑠 ∑ √𝜆𝑖|𝑦𝑖|
𝑑
𝑖=1 )] 

                   = exp(−𝑠𝑐)∏ 𝔼[exp(𝑠√𝜆𝑖|𝑦𝑖|)]
𝑑
𝑖=1  

                    = 2exp (−𝑠𝑐 +
𝑠2

2
∑ 𝜆𝑖
𝑑
𝑖=1 ), 

where 𝜆1, ⋯ , 𝜆𝑑 are the eigenvalues of Λ. The first inequality comes from the comparison 

of ℓ1  norm and ℓ2  norm. The second inequality comes from Markov’s inequality. The 

second equality comes from the monotonicity of exponential function. The third equality 

comes from the independence of 𝑦1, ⋯, 𝑦𝑑 . The last equality comes from the moment 

generating function of folded normal distribution, which is 𝔼[exp(𝑠√𝜆𝑖|𝑦𝑖|)] =

2exp (
𝑠2𝜆𝑖

2
). 

 Taking 𝑠 =
𝑐

∑ 𝜆𝑖
𝑑
𝑖=1

, we have ℙ[‖𝐱‖2 > 𝑐] ≤ 2exp (−
𝑐2

2tr(Σ)
), which comes from the 

sum of the eigenvalues of Σ equals to the trace of Σ. 

∎ 

J. Proof of Theorem 4.1:  

Denote ‖∙‖ as ℓ2 norm and ‖∙‖𝐹 as Frobenius norm. By Cauchy-Schwarz Inequality, we 

have  
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‖𝑣𝑒𝑐(𝐁2) − 𝑣𝑒𝑐(𝐁1)‖ = ‖(
1

𝑁
𝐉𝜂𝜂⊗𝐙𝑇𝐙)

−1

𝑣𝑒𝑐 (
1

𝑁
𝐙𝑇𝐑𝐉𝜂𝜂)‖ 

                                                ≤ ‖(
1

𝑁
𝐉𝜂𝜂⊗𝐙𝑇𝐙)

−1

‖‖𝑣𝑒𝑐 (
1

𝑁
𝐙𝑇𝐑𝐉𝜂𝜂)‖ 

                                   = ‖(𝐉𝜂𝜂⊗
𝐙𝑇𝐙

𝑁
)

−1

‖‖
1

𝑁
𝐙𝑇𝐑𝐉𝜂𝜂‖

𝐹
  

                                                                  ≤ ‖(𝐉𝜂𝜂⊗
𝐙𝑇𝐙

𝑁
)
−1

‖‖
1

𝑁
𝑣𝑒𝑐(𝐙𝑇𝐑)‖‖𝐉𝜂𝜂‖𝐹

, 

in which, for an entry 𝑟𝑖𝑗 of 𝐑, we have 𝑟𝑖𝑗~𝒩(0, 4𝑄2𝜎𝜀,𝛿
2 ).  

Denote 𝐊 = 𝐙𝑇𝐑 ∈ ℝ𝑄1×𝑄2 with 𝑘𝑖𝑗 = 𝒛𝑖
𝑇𝒓𝑗, where 𝒛𝑖 is the 𝑖th column of 𝐙, and 

𝒓𝑗  is the 𝑗 th column of 𝐑 . Given 𝐙 , we have 𝑘𝑖𝑗~𝒩(0,∑ 𝑧𝑖𝑙
24𝑄2𝜎𝜀,𝛿

2𝑁
𝑙=1 ) . Then, 

𝑣𝑒𝑐(𝐊)~𝒩(𝟎, 𝚺𝐊) , where 𝚺𝐊 ∈ ℝ
𝑄1𝑄2×𝑄1𝑄2  is a diagonal matrix with tr(𝚺𝐊) =

4𝑄2
2𝜎𝜀,𝛿

2 ∑ ∑ 𝑧𝑖𝑙
2𝑁

𝑙=1
𝑄1
𝑖=1 = 4𝑄2

2𝜎𝜀,𝛿
2 ‖𝐙‖𝐹

2 . Thus, we have 

ℙ [‖
1

𝑁
𝑣𝑒𝑐(𝐙𝑇𝐑)‖ > 𝛽] = ℙ[‖𝑣𝑒𝑐(𝐙𝑇𝐑)‖2 > 𝑁𝛽] ≤ 2exp (−

𝑁2𝛽2

8𝑄2
2𝜎𝜀,𝛿

2 ‖𝐙‖𝐹
2). 

The above inequality is implied by Lemma 4.3. Moreover, we have 
𝐙𝑇𝐙

𝑁
=

1

𝑁
∑ 𝒛𝑖 ∙ 𝒛𝑖

𝑇𝑁
𝑖=1 , 

where 𝒛𝑖 is the 𝑖th row of 𝐙. This means ‖(𝐉𝜂𝜂⊗
𝐙𝑇𝐙

𝑁
)
−1

‖ = 𝑂(1). 

 Therefore, we can conclude that ℙ[‖𝑣𝑒𝑐(𝐁2) − 𝑣𝑒𝑐(𝐁1)‖ > 𝛽] ≤

𝑂 (exp (−
𝑁2𝛽2

8𝑄2
2𝜎𝜀,𝛿

2 ‖𝐙‖𝐹
2)). 

∎ 

K. Proof of Corollary 4.1: 

 To prove plim
𝑛→∞

𝑣𝑒𝑐(𝐁2) = plim
𝑛→∞

𝑣𝑒𝑐(𝐁1), it equals to prove 
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lim
𝑛→∞

ℙ[‖𝑣𝑒𝑐(𝐁2) − 𝑣𝑒𝑐(𝐁1)‖ > 𝛽] = 0 

for any arbitrary small 𝛽. Given theorem 4.1, it equals to prove  

lim
𝑛→∞

𝑂(exp (−
𝑁2𝛽2

8𝑄2
2𝜎𝜀,𝛿

2 ‖𝐙‖𝐹
2)) = 0. 

It is equivalent to prove lim
𝑛→∞

‖𝐙‖𝐹
2

𝑁2
= 0. Since ‖𝐙‖𝐹

2 = ∑ ∑ 𝑧𝑖𝑗
2𝑄1

𝑗=1
𝑁
𝑖=1 ≤ 𝑁𝑄1𝑧MAX

2 , where 

𝑧MAX = ‖𝐙‖MAX. Because 𝐙 ∈ ℛ𝑁×𝑄1, we have lim
𝑛→∞

‖𝐙‖𝐹
2

𝑁2
= 0, which proves Corollary 4.1. 

∎ 
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