
An Introduction to Mixture Models

Yu Ding

The University of Texas MD Anderson Cancer Center

Nov 11th, 2024

Yu Ding (UTMDACC) Statistical Modeling Series I 1 / 19



Outline

1 Finite Mixture Model

2 Common Mixture Models

3 A Short Summary

4 Mixture Model in Deep Learning

Yu Ding (UTMDACC) Statistical Modeling Series I 2 / 19



Outline

1 Finite Mixture Model

2 Common Mixture Models

3 A Short Summary

4 Mixture Model in Deep Learning

Yu Ding (UTMDACC) Statistical Modeling Series I 3 / 19



Finite Mixture Model

Let’s note Y = {Y1,Y2, · · · ,YN} is a sample of size N, where Yi is a
P-dimensional random vector with probability density function f (yi ) on
RP , and yi its realization.

f (yi ) =
K∑

k=1

πk fk(yi ),

where fk(yi ) is a component density of the mixture, and πk the weight of
population k subject to constraints 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1.
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Finite Mixture Model

A new random variable is introduced, Z ∈ {0, 1}N×K . zik = 1 if yi belongs
to population k . {zi1, · · · , ziK} are assumed to be distributed according to
a multinomial distribution:

{zi1, · · · , ziK} ∼ M(1, π1, · · · , πK ).

The conditional, or posterior, distribution is

P{zik = 1|Yi = yi} =
πk fk(yi |θk)∑K
k=1 πk fk(yi |θk)

.
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Expectation-Maximization Algorithm

Let X = Y × Z be the complete data sample space, where Y is the
observed sample space and Z is the hidden sample space.
Define ψ = {π1, · · · , πK , θ1, · · · , θK}. The complete-data log-likelihood
function is

logLc(X;ψ) =
N∑
i=1

K∑
k=1

zik log{πk f (yi ; θk)}.

In the Expectation step, we compute the expectation of the log-likelihood
function given ψ′

Q(ψ,ψ′) =
N∑
i=1

K∑
k=1

Eψ′{zik |Yi = yi} log{πk f (yi ; θk)}.

The EM algorithm consists of two steps:

E-step: calculate Q(ψ,ψ′)

M-step: choose ψ′ = argminψ Q(ψ,ψ′)
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Negative binomial mixture model, and Binomial mixture
model

In transcriptomic analysis, Li et al., 2023 [1], yij is the observed RNA
counts for gene j in sample i .

yij |Ci = k ∼ NB(µijk , πj), and log(µijk) = log(si ) + βjk ,

where Ci is the cluster assignment for the ith sample, si is the
normalization size factor of the ith sample.

In genomic analysis, Jiang et al., 2024 [2], let ϕi ∈ [0, 1] be the cellular
prevalence (CP) of SNV i , we have the optimization problem as

min
ϕ

−
S∑

i=1

[ri log f (ϕi ) + (ni − ri )(1− log f (ϕi ))] +
∑

1<j≤S

pλ(|ϕi − ϕj |)


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Negative binomial mixture model, and Binomial mixture
model

In transcriptomic analysis, Li et al., 2023 [1], yij is the observed RNA
count for gene j in sample i .

yij |Ci = k ∼ NB(µijk , πj), and log(µijk) = log(si ) + βjk ,

where Ci is the cluster assignment for the ith sample, si is the
normalization size factor of the ith sample.

In genomic analysis, Jiang et al., 2024 [2], SNVs from a common cancer
cell population or subclone have identical CP.

ri |Ci = k ∼ Binomial(ni , fi (ϕk))
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Gaussian Mixture Model (GMM)

Figure: https://en.wikipedia.org/wiki/Mixture_model
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A semiparametric Gaussian mixture model for chest
CT-based 3D blood vessel reconstruction Zeng et al., 2024
[3]

Yi |{Xi ,Zi = m} ∼ N (µm(Xi ), σ
2
m(Xi ))
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Latent Dirichlet Allocation (LDA) Model

Blei, Ng, and Jordan, 2003 [4]
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LDA for Predicting Tissue-Specific Functional Effects of
Noncoding Variation

For each variants i , there are K tissue-specific functional scores:
Xi = {xi1, · · · , xiK} of K functional annotations. There are two latent
functional classes. Latent indicator Ci = 1 if variant i belongs to the first
functional class.

Backenroth et al., 2018 [5]

Yu Ding (UTMDACC) Statistical Modeling Series I 13 / 19



Outline

1 Finite Mixture Model

2 Common Mixture Models

3 A Short Summary

4 Mixture Model in Deep Learning

Yu Ding (UTMDACC) Statistical Modeling Series I 14 / 19



Why mixture model?

Capturing Heterogeneity

Flexibility in Modeling Complex Distributions

Probabilistic Interpretation
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Variational Autoencoder (VAE)

In the multivariate form, GMM:
yi |zi = k ∼ N (µk ,Σk).

↓

Assume the latent variable z is
sampled from a high-dimensional
space Z, parameter θ is sample from
Θ: y|{z , θ} ∼ N (f (z , θ), σ2I).

↓

How do we define z? What does
function f represent?

↓

We do not need to define z . Assume
z ∼ N (0, I).

↓

Function f is a multi-layer neural
network, which first maps z into
some latent values of y, and then
maps those latent values to
observations.
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VAE for Population Genetics

Geleta et al., 2023 [6]
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Thank you!
Questions?
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