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Finite Mixture Model

Let's note Y = {Y1, Y2,---, Yy} is a sample of size N, where Y; is a
P-dimensional random vector with probability density function f(y;) on
RP and y; its realization.

K
Flyi) =Y mifilyi),
k=1

where fi(y;) is a component density of the mixture, and 7y the weight of
population k subject to constraints 0 < 7w, <1 and ZkK:1 mr = 1.
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Finite Mixture Model

A new random variable is introduced, Z € {0, 1}NXK. zix = 1 if y; belongs

to population k. {zj1,---,zjk} are assumed to be distributed according to
a multinomial distribution:

{zi1, -+ ,zik} ~ M(1, 1, -+, TK).

The conditional, or posterior, distribution is

T f i9
P{Zl'k:]-“/i:yi}: Kk k(y‘ k) '
2 k=1 T Fi(vilOk)
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Expectation-Maximization Algorithm

Let X =) x Z be the complete data sample space, where ) is the
observed sample space and Z is the hidden sample space.

Define ¢p = {m1,--- ,mk, 01, ,0k}. The complete-data log-likelihood
function is

N K
log L°(X; ¢) = Zzzlk log{mif(yii Ok)}-
i=1 k=1

In the Expectation step, we compute the expectation of the log-likelihood
function given )’

N K
— Z ZEW{Z,-H Yi = yi} log{mif(yi; 0k)}

i=1 k=1

The EM algorithm consists of two steps:
o E-step: calculate Q(1),v)
o M-step: choose ¢/’ = arg miny Q(¢),7)')

Yu Ding (UTMDACC) Statistical Modeling Series | 6 /19



Outline

© Common Mixture Models

Yu Ding (UTMDACC) Statistical Modeling Series |



Negative binomial mixture model, and Binomial mixture

model

In transcriptomic analysis, Li et al., 2023 [1], y;; is the observed RNA
counts for gene j in sample i.

y,-j|C,- =k~ NB(HijkﬂTj); and Iog(u;jk) = Iog(s,-) + /lem

where C; is the cluster assignment for the ith sample, s; is the
normalization size factor of the ith sample.

In genomic analysis, Jiang et al., 2024 [2], let ¢; € [0, 1] be the cellular
prevalence (CP) of SNV i, we have the optimization problem as

s
m(;n — Z[r,- log f(¢:) + (ni — ri)(1 — log f(¢:))] + Z px(loi — ¢j])
i—1

1<j<S
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Negative binomial mixture model, and Binomial mixture

model

In transcriptomic analysis, Li et al., 2023 [1], yij is the observed RNA
count for gene j in sample J.

y,-J-]C,- =k~ NB(MUk,ﬂj), and Iog(,u,-jk) = |Og($,') + ﬁjk;

where C; is the cluster assignment for the ith sample, s; is the
normalization size factor of the ith sample.

In genomic analysis, Jiang et al., 2024 [2], SNVs from a common cancer
cell population or subclone have identical CP.

r,-\C,- =k~ Binomia/(n,-, ﬁ(¢k))
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Gaussian Mixture Model (GMM)
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https://en.wikipedia.org/wiki/Mixture_model

A semiparametric Gaussian mixture model for chest

CT-based 3D blood vessel reconstruction Zeng et al., 2024

3]

‘ Position X; € D
: Value Y; € R

Class Z: € {1,--- , M}
Prior mm(X;)

Yil{Xi, Zi = m} ~ N (um(X;), o5m(X7))
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Latent Dirichlet Allocation (LDA) Model

1. Choose N ~ Poisson(§).
2. Choose 8 ~ Dir(ov).
3. For each of the N words w,,:
(a) Choose a topic z, ~ Multinomial(0).

(b) Choose a word wy, from p(wy | z,, B), a multinomial probability conditioned on the topic
Zp.

010109,

Blei, Ng, and Jordan, 2003 [4]
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LDA for Predicting Tissue-Specific Functional Effects of

Noncoding Variation

For each variants /i, there are K tissue-specific functional scores:

Xi = {xi1, -+ ,xik} of K functional annotations. There are two latent
functional classes. Latent indicator C; = 1 if variant / belongs to the first
functional class.

(1) For each tissue j, choose (1 — m;, ;) ~ Dir(ao, a1).

(2) Given i, for each variant i with t; = j, choose a class C; ~
Bern()).

(3) Given Cy, ..., C,, Xy, ..., X, are independently generated
such that each X is generated from the appropriate multi-
variate distribution: F; if C; = 1 and F, otherwise.

Backenroth et al., 2018 [5]
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Why mixture model?

o Capturing Heterogeneity
@ Flexibility in Modeling Complex Distributions

@ Probabilistic Interpretation
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@ Mixture Model in Deep Learning
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Variational Autoencoder (VAE)

In the multivariate form, GMM:

yilzi = k ~ N (px, Z). 1
3 We do not need to define z. Assume
z~N(0,1).

Assume the latent variable z is

sampled from a high-dimensional 1

space Z, parameter 6 is sample from

©: yl{z,0} ~ N (f(z,0),02). Function f is a multi-layer neural

network, which first maps z into

+ some latent values of y, and then
maps those latent values to

How do we define z? What does observations.

function f represent?
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VAE for Population Ge
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Fig. 1 Qualitative comparison of PCA and VAE projections. (a) The top row i
PCA and VAE for 4,894 human samples using 839,629 SNPs. The second row displays projections of 489 canine samples using 198,473

SNP positions. (b) Focus of VAE projections of Native American subpopulations (in yellow), and African subpopulations (in blue).

Geleta et al., 2023 [6]
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Thank youl!
Questions?
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