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A brief introduction to Lagrangian Duality

Primary Problem

min
x

f (x)

s.t.hi (x) ≤ 0, i ∈ {1, · · · , I}
ℓj(x) = 0, j ∈ {1, · · · , J}

The objective function f (x) usually has
poor properties (non-convex or no
Lipschitz continuity).

The feasible region is not always a
convex set.
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A brief introduction to Lagrangian Duality

Lagrangian of the Primary Problem

L(x , λ, ν) = f (x) +
I∑

i=1

λihi (x) +
J∑

j=1

νjℓj(x),

where λ, ν are Lagrangian multipliers.
Dual function

g(λ, ν) = inf
x∈domf

(f (x) +
I∑

i=1

λihi (x) +
J∑

j=1

νjℓj(x)).

Note that, g(λ, ν) is concave w.r.t λ, ν, and the above infimum is taken
over the domain of f .
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A brief introduction to Lagrangian Duality

Primary Problem

min
x

f (x)

s.t.hi (x) ≤ 0, i ∈ {1, · · · , I}
ℓj(x) = 0, j ∈ {1, · · · , J}

Dual Problem

max
λ,ν

g(λ, ν)

s.t.λ ≥ 0.

The dual problem is much easier to solve, as it is a convex optimization
with linear constraints.
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Dual Asent

Consider an easier problem minx f (x) s.t. Ax = b.
Its dual function is

g(y) = inf
x∈domf

f (x) + yT (Ax − b).

The gradient of g(y) is ∂g
∂y = Ax∗ − b

The dual asent algorithm is

Initialize dual guess y (0)

repeat for k = 1, 2, 3, · · ·
x (k) = argminx∈domf f (x) + (y (k−1))TAx
y (k) = y (k−1) + tk(Ax

(k) − b)
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Augmented Lagrangian method
a.k.a method of multipliers

The disadvantage of dual ascent is that it requires strong conditions to
ensure convergence, i.e., convexity and Lipschitz continuity, etc. (It can be
considered similar to the gradient descent algorithm.)
We propose a new primal problem

min
x

f (x) +
ρ

2
||Ax − b||22

s.t. Ax = b

The benefit that comes with the quadratic penalty term is that we can
always adjust ρ such that the objective function is convex (under mild
assumptions), as long as matrix A has full column rank.
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Augmented Lagrangian method

min
x

f (x) +
ρ

2
||Ax − b||22

s.t. Ax = b

Initialize dual guess y (0)

repeat for k = 1, 2, 3, · · ·
x (k) = argminx∈domf f (x) + (y (k−1))TAx + ρ

2 ||Ax − b||22
y (k) = y (k−1) + tk(Ax

(k) − b)
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Alternating Direction Method of Multipliers (ADMM)

Consider the problem
min
x ,z

f (x) + g(z)

s.t. Ax + Bz = c

The augmented Lagrangian is

Lρ(x , z , u) = f (x) + g(z) + uT (Ax + Bz − c) +
ρ

2
||Ax + Bz − c||22

The algorithm is

repeat for k = 1, 2, 3, · · ·
x (k) = argminx Lρ(x , z

(k−1), u(k−1))
z (k) = argminz Lρ(x

(k), z , u(k−1))
u(k) = u(k−1) + tk(Ax

(k) + Bz (k) − c)
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Divide and Conquer

It can split a large problem into a series of subproblems. Usually, each
subproblem has a closed form solution. Consider problem

min
x

f (x) + g(Ax)

We can transform it into

min
x

f (x) + g(z), s.t. Ax − z = 0.

Lρ(x , z , u) = f (x) + g(z) + uT (Ax + Bz − c) +
ρ

2
||Ax + Bz − c||22

repeat for k = 1, 2, 3, · · ·
x (k) = argminx g(z) + (u(k−1))TAx + ρ

2 ||Ax + Bz (k−1) − c ||22
z (k) = argminz f (x) + (u(k−1))TBz + ρ

2 ||Ax
(k) + Bz − c ||22

u(k) = u(k−1) + tk(Ax
(k) + Bz (k) − c)

Yu Ding (UTMDACC) Optimization Series I 14 / 20



Distributed Optimization

Given y ∈ Rn, x ∈ Rn×p, we have the group lasso problem as

min
β

1

2
||y − Xβ||22 + λ

G∑
g=1

cg ||βg ||2

Rewrite as

min
α,β

1

2
||y − Xβ||22 + λ

G∑
g=1

cg ||αg ||2, s.t. β − α = 0.

ADMM steps:

repeat for k = 1, 2, 3, · · ·
β(k) = (XTX + ρI )−1(XT y + ρ(α(k−1) − ω(k−1)))
for g = 1, · · · ,G do in parallel

α
(k)
g = Rcgλ/ρ(β

(k) + ω
(k−1)
g )

ω(k) = ω(k−1) + β(k) − α(k)
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ADMM in CliPP

The problem, eq.(8), in CliPP is

min
ω

−ℓ(ω) +
∑

1≤i<j≤s

pλ(|ωi − ωj |).

Define ηij = ωi − ωj , we can rewrite it as

min
ω,η

−ℓ(ω) +
∑

1≤i<j≤s

pλ(|ηij |).

Then the augmented Lagrangian is

L(ω,η, τ , λ) =− ℓ(ω) +
∑

1≤i<j≤s

pλ(|ηij |) +
α

2

∑
1≤i<j≤s

(ηij − ωi − ωj)
2

−
∑

1≤i<j≤s

τij(ηij − ωi − ωj).
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ADMM in CliPP

repeat for k = 1, 2, 3, · · ·
eq.(S3) ω(k) = (BTB + α∆T∆)−1[α∆T (η(k−1) − τ (k−1))− BTA]

eq.(S4) η
(k)
ij = argminηij

α
2 (δij − ηij)

2 + pλ(|ηij |)
eq.(S5) τ (k) = τ (k−1) − α(∆ω(k) − η(k))

Yu Ding (UTMDACC) Optimization Series I 18 / 20



ADMM in CliPP

https://github.com/wwylab/CliPP/blob/master/src/kernel.cpp

Update ω

Update η

Update τ
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Thank you!
Questions?
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