Deep Learning—Based Spatial Analysis of TLSs in CRC Reveals Stromal
Barriers Predicting Impaired Cell-Cell Communication
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INTRODUCTION

Colorectal cancer (CRC) treatment remains challenging
due to high rates of therapeutic resistance and relapse,
underscoring the urgent need to decode resistance.
Immunotherapy has transformed oncology, yet only a
fraction of CRC patients derive benefit. The iImmune
tumor microenvironment (ITME) Is spatially organized In
ways that critically shape antitumor immunity and
therapy response. Tertiary lymphoid structures (TLS)
have emerged as key prognostic correlates in many
cancers, highlighting how local cell-cell interactions,
both Inside and outside TLS niches, may govern
sensitivity or resistance to immunotherapies

AIM OF THE STUDY

This study aims to characterize the spatiotemporal
organization of cells within TLSs in CRC patients treated
with immune checkpoint inhibitors (ICls) and to elucidate
how stromal and immune cell interactions influence TLS
formation, Immune cell Infiltration, and ultimately
therapeutic response.
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Figure 1. (A) Schematic representation of CRC tissue microarray (TMA) assembly.
Blue dots indicate lymphoid follicles corresponding to TLSs. The analysis incorporated a
panel of 58 antibody markers and 2 nuclear stains to annotate and classify diverse
immune, stromal, and tumor cell populations3. (B) Workflow for TLS detection and
classification. TLS regions were identified by mapping high B-cell density, expanding
neighborhoods around B-cell centroids, and segmenting contiguous clusters. Extracted
TLSs were characterized by cellular density, composition, aggregation, and intercellular
network features.
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Figure 2. Stromal-restricted centralities model Stromal-restricted centrality analysis
showing how stromal cells mediate immune-tumor communication. High mediation
scores indicate a potential stromal barrier limiting immune infiltration.
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RESULTS

Distinct cellular organization within and outside TLSs reflects differences in TLS maturation

FIG 3. (A)Representative TLSs across TMA cohorts A and B illustrate classification into nascent (blue),
iIntermediate (green), and mature (red) maturation states. (B) Cell composition derived by the classification
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algorithm provides reference distributions of immune subsets across TLS subtypes.
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Fig. 4. (A) Cell type composition shifts across TLS maturation in CLR and DIl patients. Combined
analysis of CLR and DIl TLSs shows significant changes in cell type proportions with maturation: decreased B
and CD4" T cells and increased plasma cells, macrophages, stroma, and tumor cells.

(B) Comparative spatial gradients of stroma, vasculature, and macrophages in CLR and DIl TLSs. Line
plots show proportions of stromal cells, CD68" macrophages as a function of distance to TLS boundaries
(negative = inside, positive=outside) across TLS maturation stages.

Distinct NK cell distribution inside and outside TLSs reveals stromal interference with immune interactions
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FIG 5. (A) Gradient of NK cell proportion across the TLS interface. The proportion of NK cells was
guantified relative to the TLS boundary (dashed line) across different TLS maturation stages:
unorganized (green), secondary (orange), and fully formed (blue). NK cells were more enriched outside
Immature TLSs, whereas mature TLSs showed a more balanced distribution across the boundary.

(B) NK cell mean intensity in CLR vs DIl patients relative to the TLS boundary. NK cell signal
Intensity was highest near nascent and mature TLSs, suggesting dynamic NK localization and potential
modulation by TLS maturation state within the CLR subtype. NK cell signal remained higher in nascent
TLS regions, indicating limited NK enrichment near mature TLSs within the DIl subtype
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a : : : : : NK—-macrophage interactions within
o 20 MeanﬁﬁporﬁomnSgi/g"hborhoodBO/" % DIl nascent TLSs. Bar plot showing the
proportion of NK cells whose
communication paths to macrophages
were either blocked by stromal cells
(70.4%) or direct (29.6%).

FIG 5. (C) Average neighborhood composition of NK cells. Bar
plot showing the mean proportion of neighboring cell types within a 75
um radius around NK cells. NK cells were frequently found near
macrophages, CD4* T cells, and stromal elements, though many
remained spatially isolated, suggesting restricted immune connectivity.
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FIG 6. (A)NK cell-TLS path analysis relative to stromal barriers.
Scatter plot showing distances of NK cells from the TLS boundary (x-
axis) and from the nearest stromal cell (y-axis) in DIl nascent TLSs.
NK cells were classified based on path status: direct or stroma-
Intervened, either inside or outside TLS regions. Cells with intervening
stroma exhibit increased distance to TLS centers or boundaries,
suggesting stromal obstruction of NK infiltration. (B) Proposed model
of stromal-mediated blockade of NK cell infiltration into TLSs.
Schematic illustrating how fibroblast-rich stromal regions at the TLS
periphery may hinder NK cell entry and interaction with intratumoral
Immune populations

CONCLUSIONS

e Spatial modeling of TLS architecture revealed
that the degree of stromal interference
correlates with TLS formation and maturation.

e Stromal barriers play a key role in Ilimiting
immune cell infiltration and cell—cell
communication within TLSs, particularly
hindering NK-macrophage interactions in the
DIl subtype of CRC.

FUTURE DIRECTIONS

Focus on identifying molecular and spatial cues
within the stroma that regulate TLS formation and
modulate immune cell infiltration to guide strategies
enhancing immunotherapy efficacy.
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